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Proper parameter settings of support vector machine (SVM) and feature selection are of
great importance to its efficiency and accuracy. In this paper, we propose a parallel time
variant particle swarm optimization (TVPSO) algorithm to simultaneously perform the
parameter optimization and feature selection for SVM, termed PTVPSO-SVM. It is imple-
mented in a parallel environment using Parallel Virtual Machine (PVM). In the proposed
method, a weighted function is adopted to design the objective function of PSO, which
takes into account the average classification accuracy rates (ACC) of SVM, the number of
support vectors (SVs) and the selected features simultaneously. Furthermore, mutation
operators are introduced to overcome the problem of the premature convergence of PSO
algorithm. In addition, an improved binary PSO algorithm is employed to enhance the per-
formance of PSO algorithm in feature selection task. The performance of the proposed
method is compared with that of other methods on a comprehensive set of 30 benchmark
data sets. The empirical results demonstrate that the proposed method cannot only obtain
much more appropriate model parameters, discriminative feature subset as well as smaller
sets of SVs but also significantly reduce the computational time, giving high predictive
accuracy.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

As one of primary machine learning techniques, SVM is based on the Vapnik–Chervonenkis theory and structural risk
minimization principle [1–3]. It tries to find the tradeoff between minimizing the training set error and maximizing the mar-
gin, in order to achieve the best generalization ability and remain resistant to over fitting. Additionally, one major advantage
of the SVM is the use of convex quadratic programming, which is able to provide global rather than local minima. Recently,
many applications of the SVM have been found in a wide variety of fields, including handwritten digit recognition [4], face
detection in images [5], text categorization [6], medical diagnosis [7] and so forth. Parameter setting plays a significant role
in designing an effective SVM model. Since the linear kernel is a special case of RBF kernel, our investigation will primarily
focus on Gaussian kernel to find out the optimal parameter values of RBF kernel function (i.e., C and c). As shown by Keerthi
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and Lin [8], the linear kernel with a penalty parameter C has the same performance as the RBF kernel with some parameters
(C and c). Other kernel parameters can also be tackled in the same way by using our developed method. The first parameter,
penalty parameter C, determines the trade-off between the fitting error minimization and model complexity. The second
parameter, gamma (c) of the kernel function, defines the non-linear mapping from the input space to some high-dimensional
feature space. In addition to the kernel parameter setting, choosing the optimal input feature subset will greatly influence
the performance of the SVM as well. Excessively large feature vectors will significantly slow down the learning process as
well as cause the SVM to overfit the training data. Feature selection addresses aforementioned problems by removing
irrelevant, redundant and correlated features, and thus improving the accuracy of the classification model as well as
decreasing the computational cost [9]. Both of parameter setting and feature selection are crucial because the feature
selection influences the appropriate kernel parameters and vice versa [10], which suggests that they should be dealt with
simultaneously.

The grid search method [11,12] and the gradient descent method [13–15] are two of the most common optimization
methods for handling the parameter optimization for SVM. Grid search can lead to the highest classification accuracy in
an interval through setting appropriate values for the upper bound, lower bound, and step of searching. However, this
approach is a local search based that is vulnerable to local optimum. Additionally, to set an appropriate searching step is
not an easy job. Apart from the grid search method, the gradient descent method is also often used to tackle the parameter
optimization for SVM. Nevertheless, one disadvantage of gradient descent algorithm is that this algorithm is sensitive to ini-
tial parameters. If initial parameters are far from the optimal solution, it will be easily converged to a local optimum.
Recently, metaheuristic-based search algorithms have been widely used to address optimization problems. These
algorithms, such as the genetic algorithm (GA), artificial immune system (AIS), ant colony optimization (ACO), simulated
annealing (SA), particle swarm optimization (PSO), are considered to have a better chance of finding global optimum solution
than traditional methods.

A great deal of work on the model selection problem of SVM by employing metaheuristics has been done. In greater detail,
in [16] an ACO based approach was proposed to simultaneously optimize the feature subset and the SVM kernel parameters.
Its experimental results indicate that hybridized approach can correctly select the discriminating input features and achieve
high classification accuracy. In [17], a multi-objective AIS based method was developed for parameter optimization in sup-
port vector machine. The fitness function of the method is based on the number of support vectors (SVs) and the classifica-
tion accuracy (ACC) of SVM. However, it only deals with the parameter optimization, does not tackle the feature selection
problem. In [18], GA was proposed to simultaneously optimize the feature subset and the SVM kernel parameters; the objec-
tive function is based on the number of features and the ACC of SVM. In [19], a PSO based approach was proposed for select-
ing features and setting kernel parameters. The objective function of the method depends on the number of features and the
ACC of SVM. In [20,21], a PSO based method and a SA based method for parameter determination and feature selection were
developed, respectively. While the objective functions of the two methods only depend on the ACC of SVM. In [22], a PSO
based parameter optimization approach for least-squares support vector machine (LS-SVM) was proposed, and the objective
function is only based on the ACC of LS-SVM. One disadvantage of the aforementioned methods is that their objectives do not
consider the number of SVs. It will not only slow down the performance of testing stage, but also result in some irrelevant
data being given as SVs.

In this paper, a novel method, namely PTVPSO-SVM, is proposed to overcome above-discussed shortages. In the pro-
posed method, we take into account the ACC of SVM, the number of SVs and the number of features simultaneously in
designing the objective function to exploit the maximum generalization capability of SVM. The three sub-objectives are
integrated into one single objective function by linearly weighting. In order to further balance the local and global search
in PSO, the adaptive control parameters (including TVAC and TVIW) are introduced which help the algorithm explore the
search space more efficiently. Moreover, the mutation operation is adopted to avoid the premature convergence of the PSO
algorithm. Most important of all, we have implemented our method in a parallel computing environment, which is able to
significantly reduce computational time. To our knowledge, the work using a high performance technique to tackle the
parameter optimization and feature selection for SVM was ever done by Huang and Dun [19]. They implemented a hybrid
method in a heterogeneous computing environment using the web service technology. As we know, the load balancing of
web service is not easy to design and cannot achieve excellent performance without the help of senior experts. Further-
more, they did not mention how to handle the concurrent requests of command, transmission and calculation from the
clients to the server, and how to dispatch the tasks from the server to the clients according to the computational capability
and load balancing of each client. In this paper we aim at implementing an easy and efficient scheme to reduce the com-
putational time by using PVM1 that makes easy load balancing and distribute computing. The feasibility and effectiveness of
the proposed method are examined by comparing with the standard PSO-based and the grid search-based methods on a com-
prehensive set of 30 benchmark data sets from the UCI Machine Learning and StatLog databases. The numerical results and
statistical analysis confirm the significant advantages of the proposed method over others. On one hand, the proposed
method can not only obtain the appropriate parameter settings but also gain a subset of discriminative features, giving high
generalization capability. On the other hand, it gives the minimum number of SVs and significantly reduces the computa-
tional time as well.
1 http://www.csm.ornl.gov/pvm/.
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The main contributions of this article are summarized as follows:

(a) A weighted function that simultaneously takes into consideration the ACC of SVM, the number of SVs and the selected
features is developed to design the objective function. It enables the SVM classifier to give the minimum number of
SVs and the most appropriate parameter setting, as well as the best discriminative subset of features, hence giving
high generalization capability.

(b) The adaptive control parameters (including TVAC and TVIW) are introduced to further balance the local and global
search in the PSO algorithm, and the mutation operation is employed to avoid the premature convergence of PSO
algorithm.

(c) An efficient parallel implementation is presented to enhance the efficiency of the method with respect to computa-
tional time.

The remainder of this paper is organized as follows. Section 2 briefly describes SVM classification problems and PSO algo-
rithms. Section 3 presents the details of implementations of the proposed PTVPSO-SVM method. The experimental results
and discussion are presented in Section 4. Finally, Conclusions and future work are summarized in Section 5.

2. Theoretical backgrounds of related methodologies

2.1. SVM for classification

This section gives a brief description on SVM. For more details, one can refer to [3,4,23,24], which give a complete descrip-

tion of the SVM theory. Let us consider a binary classification task: fxi; yig; i ¼ 1; . . . l; yi 2 f�1;1g; xi 2 Rd; where xi are data
points and yi are corresponding labels. They are separated with a hyperplane given by wTx + b = 0, where w is a d-dimen-
sional coefficient vector which is normal to the hyperplane and b is the offset from the origin. The linear SVM finds an opti-
mal separating margin by solving the following optimization task:
Minimize gðw; nÞ ¼ 1
2
jwj2 þ C

Xn

i¼1

ni; ð1Þ

Subject to : yiðwT xi þ bÞP 1� ni; ni P 0; ð2Þ
where C is a penalty value, ni is the positive slack variables. This primal problem can be reduced to the Lagrangian dual prob-
lem by introducing Lagrangian multipliers ai. According to the Karush Kuhn–Tucker (KKT) condition, we can get the optimal
solution ai. If ai > 0, the corresponding data points are called SVs. Afterwards, we can get the optimal hyperplane parameters
w and b. Then the linear discriminant function can be given by
gðxÞ ¼ sgn
Xn

i¼1

aiyix
T
i xþ b

 !
: ð3Þ
In order to make the linear learning machine work well in non-linear cases, the original input space can be mapped into
some higher-dimensional feature space via a mapping function /. With this mapping, xT

i x in the input space can be repre-
sented as the form of /(xi)T/(x) in the feature space. The functional form of the mapping /(xi) does not need to be known
since it is implicitly defined by one selected kernel: K(xi,xj) = /(xi)T/(xj). Two most widely used kernels in SVM are the
polynomial kernel and the Gaussian kernel (or Radial-Basis function, RBF), which are respectively defined as:
Kðxi;xjÞ ¼ 1þ xT
i xj

� �p
; ð4Þ

Kðxi;xjÞ ¼ expð�ckxi � xjk2Þ; ð5Þ
where p is the polynomial order, and c is the predefined parameter controlling the width of the Gaussian kernel. This inves-
tigation is going to consider the Gaussian kernel to find out the optimal parameter values of RBF kernel function (i.e., C and
c). Other kernel parameters can also be tackled in the same way by using our proposed method.

By introducing the kernel function, the decision function can be expressed as follows:
gðxÞ ¼ sgn
Xn

i¼1

aiyiKðxi;xÞ þ b

 !
ð6Þ
For the multi-class classifier, many strategies have been proposed [25]. The most popular ones are one-against-all and
one-against-one strategies. In general, both strategies can give similar results in terms of classification accuracy. In this
paper, we will consider the one-against-one strategy [12]. Briefly, classification of new instances for one-against-one case
is done by a max-wins voting strategy, in which every classifier assigns the instance to one of the two classes, then the vote
for the assigned class is increased by one vote, and finally the class with most votes determines the instance classification.
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2.2. Particle swarm optimization (PSO)

PSO is inspired by the social behavior of organisms such as bird flocking and fish schooling, which was first developed by
Kennedy and Eberhart [26,27]. The algorithm seeks to explore the search space by a population of individuals or particles.
Each particle represents a single solution with a velocity which is dynamically adjusted according to its own experience and
that of its neighboring companions. And the population of particles is updated based on each particle’s previous best perfor-
mance and the best particle in the population. In this way, PSO combines local search with global search for balancing the
exploration and exploitation. Considering a d-dimensional search space, the ith particle is represented as
~Xi ¼ ðxi;1; xi;2; . . . ; xi;dÞ, and its according velocity is represented as ~Vi ¼ ðv i;1;v i;2; . . . ;v i;dÞ. The best previous position of the
ith particle that gives the best fitness value is represented as~Pi ¼ ðpi;1; pi;2; . . . ; pi;dÞ. The best particle among all the particles
in the population is represented as ~Pg ¼ ðpg;1; pg;2; . . . ; pg;dÞ. In every iteration, each particle updates its position and velocity
according to the two best values.

2.2.1. PSO with adaptive control parameters
In order to reduce the dependence of the search process on the hard bounds of the velocity, the concept of an inertia

weight wt was introduced in the PSO algorithm [28]. The velocity and position are updated as follows:
vnþ1
i;j ¼ wt � vn

i;j þ c1 � r1 pn
i;j � xn

i;j

� �
þ c2 � r2 pn

g;j � xn
i;j

� �
; ð7Þ

xnþ1
i;j ¼ xn

i;j þ vnþ1
i;j ; j ¼ 1;2; . . . ;d; ð8Þ
where c1 and c2 are two acceleration coefficients, which define the magnitude of the influences on the particles velocity in
the directions of the local and the global optima, respectively. To better balance the search space between the global
exploration and local exploitation, time-varying acceleration coefficients (TVAC) have been introduced in [29]. This concept
will be adopted in this study to ensure the better search capability for the solutions. The core idea of TVAC is that c1

decreases from its initial value of c1i to c1f, while c2 increases from c2i to c2f using the following equations as in [29]. TVAC
can be mathematically represented as follows:
c1 ¼ ðc1f � c1iÞ
t

tmax
þ c1i; ð9Þ

c2 ¼ ðc2f � c2iÞ
t

tmax
þ c2i; ð10Þ
where c1f, c1i, c2f and c2i are constants, t is the current iteration of the algorithm, and tmax is the maximum number of
iterations.

In addition, r1 and r2 in Eq. (7) are random numbers, generated uniformly in the range [0,1]. The velocity vi,j is restricted to
the range [�vmax,vmax], in order to prevent the particles from flying out of the solution space. The inertia weight wt, which is
used to balance the global exploration and local exploitation, a large inertia weight facilitates the global search, while a small
inertia weight facilitates the local search. In order to reduce the weight over the iterations allowing the algorithm to exploit
some specific areas, the inertia weight wt is updated according to the following equation:
wt ¼ wtmin þ ðwtmax �wtminÞ
ðtmax � tÞ

tmax
; ð11Þ
where wtmax, wtmin are the predefined maximum and minimum values of the inertia weight wt, t is the current iteration of
the algorithm and tmax is the maximum number of iterations. Usually the value of wt is varied between 0.9 and 0.4. Eq. (11) is
also known as the time-varying inertia weight (TVIW) [28], which has been shown to significantly improve the performance
of PSO [30], since TVIW makes PSO have more global search ability at the beginning of the run and have more local search
ability near the end of the run. In order to further improve the performance, wt is modified to be a nonlinearly decreasing
inertia weight in this study, which is defined as follow:
wt ¼ wtmin þ ðwtmax �wtminÞ
ðtmax � tÞn

ðtmaxÞn
� �

; ð12Þ
where n is the linearly adaptation parameter, the PSO algorithm can achieve the best balance between the global and local
search through changing the different value of n.

2.2.2. Discrete binary PSO
PSO was originally introduced as an optimization technique for continuous space. In order to extend the application to

discrete spaces, Kennedy and Eberhart [31] proposed a discrete binary version of PSO where a particle moves in a state space
restricted to zero and one on each dimension, in terms of the changes in probabilities that a bit will be in one state or the
other. If the velocity is high it is more likely to choose 1, and lower values favor choosing 0. A sigmoid function is applied to
transform the velocity from continuous space to probability space:
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sigðv i;jÞ ¼
1

1þ expð�v i;jÞ
; j ¼ 1;2; . . . ; d: ð13Þ
The velocity update Eq. (7) keeps unchanged except that xi,j, pi,j and pg,j e {0, 1}, and in order to ensure that bit can transfer
between 1 and 0 with a positive probability vmax was introduced to limit vi,j. The new particle position is updated using the
following rule:
xnþ1
i;j ¼

1; if rnd < sigðv i;jÞ
0; if rnd P sigðv i;jÞ

�
; j ¼ 1;2; . . . ; d; ð14Þ
where sig(vi,j) is calculated according to Eq. (13), and rnd is a uniform random number in the range [0,1].

2.2.3. Modified discrete binary PSO
The traditional discrete binary PSO can achieve good results in solving the combinatorial optimization problem, but its

effect remains to be further improved. The feature selection refers to choosing subset of features from the set of original fea-
tures, which is a kind of combinatorial optimization problem. According to the information sharing mechanism of PSO, Shen
[32] proposed a modified binary PSO for feature selection. This new discrete binary PSO is further modified in this study to
adapt to the optimization of the feature selection task. The modified discrete binary PSO is defined as:
If 0 6 v ij 6
ð1� aÞ

2

� 	
; then xijðnewÞ ¼ xijðoldÞ; j ¼ 1;2; . . . ;d; ð15Þ

If
ð1� aÞ

2
< v ij 6

ð1þ aÞ
2

� 	
; then xijðnewÞ ¼ pij; j ¼ 1;2; . . . ; d; ð16Þ

If
ð1þ aÞ

2
< v ij 6 1

� 	
; then xijðnewÞ ¼ pgj; j ¼ 1;2; . . . ;d; ð17Þ
where parameter a is a random value in the range of (0,1), which plays the role of balancing the global and local search. The
larger the value of parameter a is, the bigger the chance of escaping the local minima is. xij is the current position of a particle,
which is composed of the total features of the data, and are assigned 0 or 1, respectively, indicates whether the correspond-
ing feature is selected or not. pij is the personal optimal value of each particle and pgj is the global optimal value among all
particles. vij is the velocity whose value is randomly distributed in the range of [0,1].

Eq. (15) is similar to the first term of the right hand side of Eq. (7), which is the velocity of the previous iteration, without
the first term, the particle velocity is only determined by the best particle positions found so far (i.e., both personal and glo-
bal best positions). Eqs. (16) and (17) are similar to the second and third terms of the right hand side of Eq. (7), which take
into account the particle’s individual experience and the interaction between the particles, respectively. Without the latter
two terms, the particle will keep on flying along the same direction until it reaches the boundary of the search space. It can
be seen as a behavior which tries to explore new search areas.

3. The proposed PTVPSO-SVM method

In this section, we describe the proposed PTVPSO-SVM method, which combines the parameter optimization with the
feature selection together, in order to achieve the highest performance. The proposed approach is comprised of two stages
as shown in Fig. 1. In the first stage, both SVM parameter optimization and feature selection are dynamically conducted by
implementing PSO algorithm simultaneously. In the second stage, SVM model performs the classification tasks using the
optimal parameter pair and feature subset via cross validation (CV) analysis. PTVPSO-SVM takes into consideration three fit-
ness values for parameter optimization and feature selection. The first one is the ACC of SVM, the second one is the number
of SVs and the last one is the number of selected features. In this way, the PTVPSO-SVM can not only achieve high classifi-
cation accuracy, but also obtain good capability of generalization. Here, we first describe the method based on the serial PSO
algorithm, termed TVPSO-SVM, and then implement it in a parallel way.

3.1. The TVPSO-SVM method based on the serial PSO algorithm

The TVPSO-SVM method was constructed through the following main steps.

Step 1: Encode the particle with n + 2 dimensions. The first two dimensions are C and c which are continuous values.
The remaining n dimensions is Boolean features mask, which is represented by discrete value, ‘1’ indicates the
feature is selected, and ‘0’ represents the feature is discarded.

Step 2: Initialize the individuals of the population with random numbers. Meanwhile, specify the PSO parameters such
as the lower and upper bounds of the velocity, the size of particles and the number of iterations.

Step 3: Train the SVM model with the selected feature subset in Step 2.



Fig. 1. Overall procedure of the proposed PTVPSO-SVM method.
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Step 4: The particle with high classification accuracy and the small number of selected features can produce a high fit-
ness value. In addition, the particle with smaller number of SVs can achieve higher classification accuracy, since
the number of SVs is proportional to the generalization error of the SVM classifier [3]. Thus, we take all of them
into account to design the objective function. The fitness value is calculated according to the following function:
f1 ¼ avgacc ¼ RK
i¼1Test Accuracyi

K

f2 ¼ 1� nsv
m

� �
f3 ¼ 1�

Pn

j¼1
fti

n

� 	
f ¼ a� f1 þ b� f2 þ k� f3;

8>>>>>><
>>>>>>:

ð18Þ
where variable avgacc in the first sub-objective function f1 represents the average test accuracy achieved by the SVM clas-
sifier via K-fold CV, where K = 5. Note that here the 5-fold CV is employed to do the model selection that is different from the
outer loop of 10-fold CV, which is used to do the performance estimation. nsv and m in the second sub-objective function f2

indicates the number of SVs and training data, respectively. In the third sub-objective function f3, fti is the value of feature
mask (‘1’ represents that feature is selected and ‘0’ indicates that feature is discarded), n is the total number of features. The
weighted summation of three sub-objective functions is selected as the final objective function. In f, variable a is the weight
for SVM classification accuracy, b indicates the weight for the number of SVs, and k represents the weight for the selected
features. The weight can be adjusted to a proper value depends on the importance of the sub-objective function. Eq. (18)
means that the ACC, the number of SVs and the size of feature subset have different significance to the classification perfor-
mance. According to our preliminary experiments, the classification performance is more depend on ACC and number of SVs
than selected features, so the value a and b are selected as bigger than that of k. Generally, the weight is set to be constant
value. We empirically found that the linearly increasing/decreasing function can further improve the classification perfor-
mance over most data sets. Thus, we define the weight as the linearly increasing/decreasing function varying along with
the iterations. They are taken the form of a ¼ ða1 � a2Þ t

tmax
þ a2, b ¼ ðb1 � b2Þ t

tmax
þ b2, k ¼ ðk1 � k2Þ t

tmax
þ k2 respectively,

where a1 þ b1 þ k1 ¼ 1, a2 þ b2 þ k2 ¼ 1. After the fitness value was obtained, the global optimal fitness was saved as gfit,
personal optimal fitness as pfit, global optimal particle as gbest and personal optimal particle as pbest.

Step 5: Increase the number of iteration.
Step 6: Increase the number of population. Update the position and velocity of C and c in each particle according to

Eqs. (7) and (8), and the features in each particle according to Eq. (7) and Eqs. (15)–(17).
Step 7: In order to explore further the search space for the PSO algorithm, the mutation strategy is adopted for the con-

tinuous type of dimensions, which represent C and c respectively. The following mutation operator is adopted,
which has been also used in PSO for function optimization problems in [33]. The mathematical form of the
mutation operator takes the following form:
xk ¼
xk þ Dðt;UB� xkÞ if rand ¼ 0
xk � Dðt; xk � LBÞ if rand ¼ 1;

�
ð19Þ
where xk denotes one variable of the first two dimension in each particle, i.e., C or c, while x0k denotes the value after the
mutation operation. The variable rand denotes the random value 0 or 1. UB denotes the upper bound of the variable xk, while
LB denotes the lower bound. The function D is given by
Dðt; yÞ ¼ y � ð1� rð1�
t

tmax
Þb Þ; ð20Þ
where r is a random number in the range [0,1], t is the current iteration of the algorithm and tmax is the maximum number of
iterations. The parameter b is a system parameter which determines the degree of dependence of mutation on the number of
the iteration.

Step 8: Train the SVM model with the selected feature subset in Step 6 and calculate the fitness value of each particle
according to Eq. (18).

Step 9: Update the personal optimal fitness (pfit) and personal optimal position (pbest) by comparing the current fit-
ness value with the pfit stored in the memory. If the current fitness is dominated by the pfit stored in the mem-
ory, then keep the pfit and pbest in the memory; otherwise, replace the pfit and pbest in the memory with the
current fitness value and particle position.

Step 10: If the size of the population is reached, then go to Step 11. Otherwise, go to Step 6.
Step 11: Update the global optimal fitness (gfit) and global optimal particle (gbest) by comparing the gfit with the opti-

mal pfit from the whole population, If the current optimal pfit is dominated by the gfit stored in the memory,
then keep the gfit and gbest in the memory; otherwise, replace the gfit and gbest in the memory with the cur-
rent optimal pfit and the optimal pbest from the whole population.

Step 12: If the stopping criteria are satisfied, then go to Step 13. Otherwise, go to Step 5. The termination criteria are that
the iteration number reaches the maximum number of iterations or the value of gfit does not improve after 100
consecutive iterations.

Step 13: Get the optimal (C, c) and the feature subset from the best particle (gbest).
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3.2. Parallel implementation of the TVPSO-SVM method (PTVPSO-SVM)

When dealing with practical problems, especially those with large scales, the evolutionary-based methods such as PSO
and GA will cost a lot of computational time. There is an urgent need to improve the performance using high-performance
computing techniques. Consequently, we attempt to implement TVPSO-SVM in parallel using PVM to speed up the search
and optimization process.

The parallel architecture of PTVPSO-SVM is implemented through a heterogeneous environment consisting of one sched-
uling server, multiple scheduling workstations and several workstations, as shown in Fig. 2. The scheduling server analyzes
the total number of tasks from the obtained problems and the current load of the scheduling workstations, and builds a task
list comprising a set of sub-task lists as well. All of the scheduling workstations are managed by a scheduling server. The jobs
are dynamically dispatched from the sub-tasks to the computing nodes according to the load balancing of computing nodes,
which are managed by the current scheduling workstation. The sub-task list consists of a job list that is a set of jobs for each
computing node. In the proposed parallel method, PVM, a software package enables users to exploit their existing computer
hardware to solve much larger problems at minimal additional cost. The flowchart of the PTVPSO-SVM is presented in Fig. 3.

The pseudo codes of the PTVPSO-SVM are described in detail as follows:

Pseudo-code for scheduling server procedure
pro_Scheduling_Server
Begin

fn_Encoding(DataSource) //Encoding C, c and features
DataSource = fn_Init(Data) //Create initial particle with feasible random numbers
fn_TrainSVM(DataFeatrue) //Train the SVM model with the selected feature subset
Fitness = fn_CalculateFitness(DataSource) //Calculate fitness value

While (Termination)
task_list = fn_BuildTaskList() //Build task-lists

While (TaskNumber == 0)
fn_Dispatch(task_list) //Dispatch tasks to scheduling workstations

TaskNumber = TaskNumber � 1
End While

DataSource = fn_MergeDFSW() //Merge data from scheduling workstations
Gfit = fn_UpdateGOF(DataSource) //Update the global optimal fitness (gfit)
Gbest = fn_UpdateGOP(DataSource) //Update the global optimal particle (gbest)

End While
Result = fn_GetOptimal(DataSource) //Get the optimal C, c and feature subset from gbest

End

Pseudo-code for scheduling workstation procedure
pro_Scheduling_Workstation
Begin

//Wait for receiving a new sub-task, a result from a node or a termination signal
While (Waiting (Flag))

If Flag == Task_ptr
While (TaskNumber == 0)

Dispatch (task_list) //Dispatch tasks to nodes
TaskNumber = TaskNumber � 1

End While
End If
If Flag == Result_ptr

Results = fn_ReceiveResult()
If Flag == Termination_ptr

Break;
End If

End While
DataSource = fn_MergeDFN(Results) //Merge data from nodes

End
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Pseudo-code for nodes procedure
pro_Nodes
Begin

While (Waiting (Flag)) //Wait for receiving a new Job
If Flag == Job_ptr

Position = fn_UpdataPosition(DataSource) //Update the position of each particle
Velocity = fn_UpdataVelocity(DataSource) // Update the velocity of each particle
fn_Mutation(DataSource) //Perform the mutation operation
Model = fn_Train(DataSource) //Train SVM model
Fitness = fn_Calculate_Fitness(DataSource) //Calculate the fitness value
Pfit = fn_UpdataPFit(DataSource) //Update the personal optimal fitness (pfit)
Pbest = fn_UpdataPbest(DataSource) //Update the personal optimal position (pbest)

End if
If Flag == Termination_ptr

Break;
End if

End While
fn_SendToWorkstation(Results) //Send results to scheduling workstation

End
4. Experimental designs

4.1. Data description

In order to evaluate the performance of the proposed method in different classification tasks, a comprehensive set of 30
benchmark data sets taken from the UCI Machine Learning and StatLog databases were tried in this investigation. Those data
sets have 3–100 attributes and 2–11 classes, and thus covering a wide range of conditions. The detail characteristics of these
data sets are presented in Table 1.
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Fig. 2. The parallel architecture of the PTVPSO-SVM.
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Some of these data sets contain missing values. The missing categorical attributes are replaced by the mode of the attri-
butes and the missing continuous ones are replaced by the mean of the attributes. In addition, all the categorical attributes
were changed to attributes with integer values to enable the chosen algorithms to handle them. For all considered problems
the input attributes are first scaled so that they lie in a suitable range. Usually, the data could be normalized by scaling them
into the interval of [�1, 1] according to the Eq. (21), where x is the original value, x0 is the scaled value, maxa is the maximum
value of feature a, and mina is the minimum value of feature a.
x0 ¼ x�mina

maxa �mina

� 	
� 2� 1: ð21Þ
In order to guarantee the valid results, the k-fold CV presented by Salzberg [34] was used to evaluate the classification
accuracy. This study set k as 10, i.e., the data was divided into ten subsets. For each time, one of the ten subsets is used
as the test set and the other nine subsets are put together to form a training set. Then the average error across all ten trials
is computed. The advantage of this method is that all of the test sets are independent and the reliability of the results could
be improved. In order to ensure the same class distribution in the subset, the data is split via stratified sampling in which the
sample proportion in each data subset is the same as that in the population. It is worth noting that the test data used in the
test stage is isolated from the training data used in the training stage, namely the optimal (C, c) and feature subset are
obtained from the training dataset, and then the test dataset is used to obtain the average CV accuracy in the testing stage,
thus preventing it from obtaining the over-estimate the accuracy.

Note that only one repetition of the 10-fold CV will not generate enough classification accuracies for comparison. Because
of the arbitrariness of partition of the data set, the predicted accuracy of a model at each iteration is not necessarily the same.



Table 1
Description of data sets used in the experiments.

No. Data sets # of classes # of instances # of features Miss.

1 Wisconsin breast cancer (Wisconsin) 2 699 9 Yes
2 Australian credit (Australian) 2 690 14 Yes
3 Germen credit (German) 2 1000 24 No
4 Pima Indians diabetes (Pima) 2 768 8 No
5 Hepatitis 2 155 19 Yes
6 Statlog heart (Heart) 2 270 13 No
7 Cleveland heart (Cleveland) 2 303 13 Yes
8 Bupa liver disorders (Bupa) 2 345 6 No
9 Wine 3 178 13 No

10 Image segmentation (Segment) 7 2310 19 No
11 Vowel recognition (Vowel) 11 990 (528/462) 10 No
12 Ionosphere 2 351 34 No
13 Sonar 2 208 60 No
14 Wisconsin diagnostic breast cancer (WDBC) 2 569 30 No
15 Teaching assistant evaluation (Teaching) 3 151 5 No
16 Parkinsons 2 195 22 No
17 Thyroid 3 215 5 No
18 Blood transfusion (Blood) 2 748 4 No
19 Glass 6 214 9 No
20 Iris 3 150 4 No
21 Vehicle silhouettes (Vehicle) 4 846 17 No
22 Haberman survival (Haberman) 2 306 3 No
23 Wisconsin prognostic breast cancer (WPBC) 2 198 34 Yes
24 Hill-valley 2 1212 (606/606) 100 No
25 Mammographic-masses (Mammo) 2 961 5 Yes
26 Contraceptive method choice (CMC) 3 1473 9 No
27 Landsat satellite (Landsat) 6 6435 (4435/2000) 36 No
28 Yeast 10 1484 8 No
29 Zoo 7 101 17 No
30 Monks1 2 556 (124/432) 7 No

Miss.’ means ‘missing value’. In (A/B), A represents the training set, B denotes the test set.
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To evaluate accurately the performance of the data sets, the 10-fold CV will be repeated 10 times and then obtained results
will be averaged. Note that Vowel, Hill-Valley, Landsat Satellite and Monks1 data sets have pre-defined training/test splits.
Thus, except these data sets, all of the experimental results are averaged over the 10 runs of 10-fold CV.

4.2. Experimental scheme

The proposed experimental framework is articulated around the following three main experiments.

(1) The first experiment aims at assessing the effectiveness of the PTVPSO-SVM method in the whole original hyper
dimensional feature space. For comparison purpose, we implemented the standard PSO algorithm based method
(PSO-SVM) as in [20] and the gird search based method (GRID-SVM).

(2) In the second experiment, it is plan to assess the capability of the PTVPSO-SVM with feature selection to enhance fur-
ther the performance of the SVM classifier by using the time variant PSO approach.

(3) The third experimental part is designed to evaluate the capability of the proposed parallel TVPSO-SVM method with
respect to the CPU time and the number of SVs.

4.3. Experimental setup

The proposed PTVPSO-SVM method is implemented using Microsoft visual C++ 2008, PVM and LIBSVM. For SVM, LIBSVM
implementation was utilized, which is originally developed by Chang and Lin [12]. We implemented the parallel PSO from
scratch. The empirical experiment was conducted on the platform with 8 workstations, 2 scheduler workstations and 1
scheduler server, each with quad-core Intel Xeon 2.0 GHz CPU and 4 GB RAM.

The detail parameter setting for PTVPSO-SVM is set as follows. The number of the iterations and particles is set to 250 and
8, respectively. The searching ranges for C and c are as follows: C e [2(�10), 2(15)] and c e [2(�15), 2(10)]. vmax is set about 60% of
the dynamic range of the variable on each dimension for the continuous type of dimensions. For the discrete type particle for
feature selection, [�vmax, vmax] was set as [0,1]. As suggested in [29], c1i, c1f, c2i and c2f were set as follows: c1i = 2.5, c1f = 0.5,
c2i = 0.5, c2f = 2.5. According to our preliminary experiment, wtmax and wtmin were set to 0.9 and 0.4, the system parameter b
in mutation operator to 5, the parameter a in the discrete binary PSO to 0.5, the parameter n in the inertia weight wt to 2.
Additionally, the parameters of a1, a2, b1, b2, k1 and k2 are taken as a1 = 0.3, a2 = 0.6, b1 = 0.7, b2 = 0.3, k1 ¼ 0, k2 ¼ 0:1, respec-
tively. In view of some difficult classification tasks, we gave LIBSVM a cache size of 640 M.
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For PSO-SVM, here we use the same setting as adopted in [20], i.e., the acceleration coefficients c1 and c2 were set to 2, the
number of the iterations and particles were set to 50 and 6 when not considering feature selection, while 250 and 8 when
considering feature selection. The searching ranges for C and c are as follows: C e [0.01,35,000] and c e [0.0001,32]. The
velocity range for feature selection, namely [�vmax, vmax] was set as [�6,6]. The objective function was designed the same
one as in [20], i.e., the ACC was used to design the fitness of each particle. And the same feature selection scheme in [20]
is adopted for PSO-SVM, namely, if the value of a variable is less than or equal to 0.5, then its corresponding feature is
not chosen. Conversely, if the value of a variable is greater than 0.5, its corresponding feature will be chosen. For GRID-
SVM, the range of the related parameters C and c were varied between C = {2�5,2�3, . . .,215} and c = {2�15,2�13, . . .,21}, and
the grid search technique [35] is employed using 5-fold CV to find out the optimal parameter values of RBF kernel function.

5. Experimental results and discussion

5.1. Experiment I

As mentioned before, in this experiment we attempted to assess the effectiveness of the PTVPSO-SVM without feature
selection. Table 2 summarizes the results of the ACC for the 30 data sets using PTVPSO-SVM without feature selection,
PSO-SVM without feature selection and GRID-SVM. It should be noted that we adopted the same experimental setup for
PSO-SVM as used in [20], but we cannot get that high accuracy on some data sets as reported in [20]. Thus, here we report
the results achieved in our own experiment environment for comparison. It can be observed that, the classification accura-
cies achieved by the developed method is much better than those of PSO-SVM and RID-SVM in all of the data sets.

In order to verify the effectiveness of the proposed method, a paired t-test on the ACC is employed for all of the data sets.
As shown in Table 2, the developed PTVPSO-SVM performs significantly better than both PSO-SVM and GRID-SVM in almost
all cases examined; only the Bupa, Wine and WDBC data sets did not exhibit the significant improvement between PTVPSO-
SVM and PSO-SVM. It reveals that the developed method can obtain more appropriate parameters and yield higher ACC in
comparison with two other methods. The better performance of the proposed method can be attributed to all features, i.e.,
adaptive control parameters (including TVIW and TVAC), mutation operators, modified binary PSO algorithm and consider-
ation of the three sub-objectives (ACC, number of SVs and selected features) in the objective function.

In order to further examine the superior performance of the developed method to that of PSO-SVM and GRID-SVM, we
conducte a detailed comparison study among the three methods on the Wisconsin and German data sets. For the sake of
Table 2
Comparison with two existing methods in terms of ACC on all data sets.

Data sets (1) PTVPSO-SVM without FS (%) (2) PSO-SVM without FS (%) (3) GRID-SVM (%) p-value (1) vs. (2) p-value (1) vs. (3)

Wisconsin 98.62 97.55 96.62 (<0.0)⁄ (<0.0)⁄

Australian 88.05 86.93 84.91 (<0.0)⁄ (<0.0)⁄⁄

German 78.02 76.34 75.33 (<0.0)⁄ (<0.0)⁄

Pima 78.14 77.58 76.65 (<0.0)⁄ (<0.0)⁄⁄

Hepatitis 86.01 84.67 81.10 (<0.0)⁄ (<0.0)⁄

Heart 86.75 85.24 82.81 (<0.0)⁄ (<0.0)⁄

Cleveland 87.21 86.55 83.44 (<0.0)⁄ (<0.0)⁄⁄

Bupa 74.76 72.03 70.95 0.061 (<0.0)⁄

Wine 98.99 98.64 98.20 0.075 (<0.0)⁄

Segment 99.01 98.41 97.10 (<0.0)⁄ (<0.0)⁄⁄

Vowel 65.22 64.18 62.77 (<0.0)⁄ (<0.0)⁄

Ionosphere 95.21 94.34 93.90 (<0.0)⁄ (<0.0)⁄

Sonar 92.66 91.27 88.98 (<0.0)⁄ (<0.0)⁄⁄

WDBC 98.44 98.01 97.45 0.085 (<0.0)⁄

Teaching 62.86 60.77 59.68 (<0.0)⁄ (<0.0)⁄⁄

Parkinson 96.56 95.13 93.39 (<0.0)⁄ (<0.0)⁄⁄

Thyroid 98.03 97.25 95.71 (<0.0)⁄⁄ (<0.0)⁄⁄

Blood 80.53 79.98 78.32 (<0.0)⁄ (<0.0)⁄

Glass 74.66 72.45 69.98 (<0.0)⁄ (<0.0)⁄⁄

Iris 98.26 97.33 95.67 (<0.0)⁄ (<0.0)⁄

Vehicle 87.67 84.98 84.27 (<0.0)⁄⁄ (<0.0)⁄⁄

Haberman 75.77 74.21 72.29 (<0.0)⁄ (<0.0)⁄⁄

WPBC 81.22 79.33 77.48 (<0.0)⁄ (<0.0)⁄

Hill-valley 73.21 71.92 69.80 (<0.0)⁄ (<0.0)⁄⁄

Mammo 86.44 83.56 82.75 (<0.0)⁄⁄ (<0.0)⁄⁄

CMC 58.66 56.67 53.85 (<0.0)⁄ (<0.0)⁄

Landsat 94.52 93.45 91.15 (<0.0)⁄ (<0.0)⁄⁄

Yeast 65.87 63.42 61.23 (<0.0)⁄ (<0.0)⁄

Zoo 96.67 94.55 93.55 (<0.0)⁄ (<0.0)⁄

Monks1 84.98 83.64 80.56 (<0.0)⁄ (<0.0)⁄⁄

FS means feature selection.
(<0.0)⁄ and (<0.0)⁄⁄ mean the p-value is lower than the level of 0.05 and 0.005 respectively.



Table 3
Comparison with two existing methods in terms of ACC for the Wisconsin data set.

Fold PTVPSO-SVM without FS PSO-SVM without FS GRID-SVM

C (�103) c (�10 �5) ACC (%) C (�103) c (�10 �5) ACC (%) C c ACC (%)

#1 2.648 3.052 98.571 3.493 1.000 94.285 0.500 0.125 92.753
#2 3.817 3.052 100.00 4.462 1.000 100.000 0.125 0.125 98.571
#3 32.768 3.052 98.571 4.770 1.000 98.571 8.000 0.125 98.571
#4 5.367 3.052 96.418 13.168 1.000 95.714 0.125 0.125 95.714
#5 24.929 3.052 100.00 11.376 1.000 95.714 0.125 0.125 95.714
#6 0.821 3.052 98.571 15.864 1.000 97.142 0.125 0.125 100.000
#7 23.171 3.052 98.571 28.004 1.000 95.714 4.000 0.125 94.286
#8 10.442 3.052 100.000 14.422 1.000 100.000 2.000 0.125 98.571
#9 32.768 3.052 97.142 9.640 1.000 97.142 0.500 0.125 95.714
#10 3.852 3.052 98.571 14.125 1.000 98.571 0.500 0.125 94.286
Avg. 14.058 3.052 98.642 11.932 1.000 97.285 1.600 0.125 96.418
Dev. 12.929 0.000 1.190 7.228 0.000 1.958 2.565 0.000 2.375

FS means feature selection.

Table 4
Comparison with two existing methods in terms of ACC for the German data set.

Fold PTVPSO-SVM without FS PSO-SVM without FS GRID-SVM

C (�103) c (�10 �5) ACC (%) C (�103) c (�10 �5) ACC (%) C (�10 3) c (�10 �4) ACC (%)

#1 5.469 3.052 79.000 28.654 1.000 77.000 0.008 78.125 76.000
#2 26.093 3.052 80.000 31.677 1.000 75.000 0.008 312.500 71.000
#3 32.768 3.052 78.000 10.926 1.000 78.000 2.048 1.221 74.000
#4 16.306 3.052 77.000 11.508 1.000 77.000 0.128 4.882 73.000
#5 5.014 3.052 78.000 26.527 1.000 75.000 0.512 4.882 77.000
#6 32.768 3.052 78.000 31.982 1.000 76.000 8.192 0.305 75.000
#7 13.783 3.052 78.000 14.717 1.000 77.000 32.768 4.882 79.000
#8 30.556 3.052 80.000 6.596 1.000 78.000 0.002 312.500 74.000
#9 0.892 3.052 78.000 23.526 1.000 77.000 2.048 1.221 76.000
#10 21.163 3.052 78.000 35.000 1.000 78.000 8.192 312.500 79.000
Avg. 18.481 3.052 78.400 22.111 1.000 76.800 5.391 103.302 75.400
Dev. 12.046 0.000 0.966 10.287 0.000 1.135 10.144 146.224 2.547

FS means feature selection.
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simplicity, here we show the detailed results using one time run of 10-fold CV. Tables 3 and 4 summarize the classification
accuracy rates and the optimal pairs of (C, c) obtained by three methods for each fold. As shown in the tables, the ACC of
PTVPSO-SVM is 98.64% for the Wisconsin data set, while the ACC of PSO-SVM and GRID-SVM are 97.29% and 96.42% respec-
tively. On the German data set, the PTVPSO-SVM achieved with the ACC of 78.40%, while PSO-SVM and GRID-SVM obtained
with the ACC of 76.80% and 75.40% respectively. In order to identify any differences among the three methods in terms of the
classification performance, we conducted a paired t-test among them on the two data sets. As indicated in Table 5, PTVPSO-
SVM performs significantly superior to the other two methods at the prescribed statistical significance level of 5%. It reveals
that the proposed PTVPSO-SVM can obtain much more appropriate parameter settings with high generalization capability.

5.2. Experiment II

In this experiment, we attempt to investigate whether or not feature selection may further improve the classification per-
formance for SVM. Table 6 reports the ACC and the number of selected features achieved by PTVPSO-SVM and PSO-SVM
using feature selection on the 30 data sets. Compared with the results obtained by the methods without feature selection
as shown in Table 2, feature selection has enhanced further the classification accuracy for SVM on all the data sets as shown
in Figs. 4 and 5. Furthermore, the feature selection does not select all features for use in the SVM classification model. Addi-
tionally, from Table 6, it can be observed that the classification accuracies achieved by the PTVPSO-SVM are consistently
higher than those of PSO-SVM in all cases. Moreover, compared with the PSO-SVM with feature selection, the number of
Table 5
Results of the t-test for three methods in terms of classification accuracy.

Data sets PTVPSO-SVM vs. PSO-SVM PTVPSO-SVM vs. GRID-SVM

df t-value p-value df t-value p-value

Wisconsin 9.000 2.387 0.041 9.000 3.040 0.014
German 9.000 3.207 0.011 9.000 3.105 0.013



Table 6
Results of PTVPSO-SVM and PSO-SVM using feature selection.

Data sets # of original features PTVPSO-SVM with FS PSO-SVM with FS

ACC (%) # of selected features ACC (%) # of selected features

Wisconsin 9 99.74 5.0 98.34 6.2
Australian 14 90.12 7.7 88.32 8.6
German 24 80.45 12.6 77.65 14.3
Pima 8 79.64 4.6 78.89 5.3
Hepatitis 19 89.43 7.1 86.12 8.0
Heart 13 88.65 7.9 87.04 8.3
Cleveland 13 90.34 6.2 88.21 8.2
Bupa 6 76.87 5.2 74.64 5.7
Wine 13 99.98 5.9 99.04 7.4
Segment 19 99.86 13.6 99.61 14.4
Vowel 13 68.42 6.3 65.68 7.0
Ionosphere 34 98.54 15.5 96.89 17.6
Sonar 60 95.36 25.3 93.57 32.4
WDBC 30 99.87 13.4 99.40 18.3
Teaching 5 65.46 2.3 63.24 3.2
Parkinson 22 98.56 5.6 96.76 8.2
Thyroid 5 99.63 2.5 99.01 3.2
Blood 4 84.73 2.1 81.32 2.6
Glass 9 78.55 3.2 75.87 4.1
Iris 4 99.32 1.2 98.69 1.8
Vehicle 17 90.27 7.3 87.37 9.2
Haberman 3 78.34 1.1 77.02 1.7
WPBC 34 84.45 14.3 82.55 19.2
Hill-Valley 100 75.65 39.2 73.72 48.3
Mammo 5 89.32 2.1 86.81 3.4
CMC 9 61.22 4.6 57.97 5.4
Landsat 36 97.98 12.3 95.65 18.8
Yeast 8 68.17 4.2 65.24 4.9
Zoo 17 98.97 7.3 96.75 9.6
Monks1 7 87.80 2.7 85.84 3.5

FS means feature selection.

Table 7
A comparison of PTVPSO-SVM and PSO-SVM using feature selection on the Wisconsin and German data sets (%).

Data sets PTVPSO-SVM with FS PSO-SVM with FS Paired t-test p-value

Wisconsin 99.74 ± 0.000 98.34 ± 0.009 <0.01
German 80.45 ± 0.003 77.65 ± 0.005 <0.01
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Fig. 4. Predictive accuracy of PSO-SVM with feature selection and PSO-SVM without feature selection.
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Fig. 5. Predictive accuracy of PTVPSO-SVM with feature selection and PTVPSO-SVM without feature selection.

Table 8
Feature selected for Wisconsin and German data sets by the PTVPSO-SVM method.

Fold Selected features for Wisconsin Selected features for German

#1 F1 F4 F7 F8 F1 F2 F3 F4 F5 F6 F9 F11 F17 F20 F23 F24

#2 F1 F2 F3 F4 F9 F1 F2 F3 F4 F5 F6 F7 F9 F13 F16 F18 F19 F22

#3 F1 F3 F4 F6 F9 F1 F2 F3 F6 F8 F9 F10 F16 F19 F20 F21 F22 F24

#4 F1 F3 F4 F5 F6 F9 F1 F2 F3 F4 F5 F6 F9 F10 F11 F12 F14 F17 F18 F20

#5 F1 F4 F6 F7 F9 F1 F2 F3 F4 F5 F8 F10 F15 F16 F17 F18 F22

#6 F1 F3 F6 F9 F1 F2 F3 F4 F5 F6 F7 F10 F16 F17 F22

#7 F1 F3 F4 F6 F7 F1 F2 F3 F4 F5 F10 F16 F17 F18 F19 F20 F22

#8 F1 F3 F6 F8 F9 F1 F2 F3 F5 F6 F7 F8 F9 F11 F12 F13 F18 F20 F21

#9 F1 F3 F4 F6 F8 F9 F1 F2 F4 F5 F6 F9 F10 F15 F17 F18 F20 F21 F24

#10 F1 F2 F3 F6 F9 F1 F2 F3 F4 F5 F8 F12 F13 F16 F18 F21 F22

Table 9
Frequency of selected features in one run 10-fold CV on the Wisconsin data set.

Feature# F1 F2 F3 F4 F5 F6 F7 F8 F9

Frequency 10 2 8 7 1 8 3 3 8
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selected features obtained by PTVPSO-SVM is more appropriate (based on the classification accuracy rates). Thus, the devel-
oped PTVPSO-SVM method can find the better beneficial subset of features as compared to PSO-SVM. Table 9.

Take the Wisconsin data set and German data set for example. By using the feature selection, the classification accuracies
obtained by the PTVPSO-SVM on these two data sets have been improved by 1.1% and 2.4% respectively. For the PTVPSO-SVM
method, the average number of the selected features via 10 runs of 10-fold CV was about 5 and 13 for the two data sets
respectively, while the average number of features selected by PSO-SVM was about 6 and 14 respectively. The superiority
of the PTVPSO-SVM in terms of ACC is statistically significant as shown by paired t-test p-value reported in Table 7. From
the table, it is interesting to find that the standard deviation of the feature subset acquired by PTVPSO-SVM is smaller than
that of PSO-SVM, which indicates consistency and stability of the developed method.

To explore how many features and what features will be selected, we further conduct an experiment on the two data sets
which are used in the previous experiment to investigate the detailed feature selection mechanism of the PSO algorithm. For
the simplicity, here we show the results through one time run of 10-fold CV. The selected features of 10 folds for the
Wisconsin data set and German data set are shown in Table 8. The original numbers of features of each data set are 9
and 24, respectively. As shown in the table, not all features are selected for classification after the feature selection on both
data sets. Furthermore, feature selection has increased the classification accuracy, as demonstrated in Table 7. For the



H.l. Chen et al. / Applied Mathematics and Computation 239 (2014) 180–197 195
Wisconsin data set, the average number of selected features by PTVPSO-SVM is 5.0, and the most important features are F1,
F3, F4, F6 and F9, which can be found in the frequency of selected features of 10-fold CV as shown in Table 9. For the German
data set, the average number of selected features by PTVPSO-SVM is 12.6, and its most important features are F1, F2, F3, F4, F5,
F6, F9, F10, F16, F17, F18, F20 and F22, which can be found in the frequency of the selected features of 10-fold CV as shown in
Fig. 6.

5.3. Experiment III

As mentioned before, the main aim of this experiment is to evaluate the efficiency of the proposed method with respect to
the computational time and the number of SVs. Table 10 summarizes the average results of the four methods (TVPSO-SVM,
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Fig. 6. The frequency of the selected features in one run 10-fold CV process on the German data set.

Table 10
The performance comparison of proposed methods with GRID-SVM.

Data sets TVPSO-SVM PTVPSO-SVM PSO-SVM GRID-SVM

# of SVs ACC (%) # of SVs ACC (%) # of SVs # of SVs

Wisconsin 54.31 99.71 54.28 99.74 72.43 84.70
Australian 305.82 90.12 305.81 90.12 327.33 344.28
German 465.52 80.46 465.54 80.45 474.51 488.90
Pima 369.35 79.66 369.33 79.64 376.40 388.82
Hepatitis 37.71 89.47 37.68 89.43 44.72 56.31
Heart 94.35 88.63 94.37 88.65 102.25 114.31
Cleveland 103.16 90.36 103.24 90.34 112.26 130.97
Bupa 178.32 76.83 178.29 76.87 195.43 210.08
Wine 41.27 99.97 41.33 99.98 61.43 76.02
Segment 289.72 99.85 289.65 99.86 318.50 335.00
Vowel 366.62 68.42 366.65 68.42 374.59 387.00
Ionosphere 89.34 98.55 89.41 98.54 97.92 111.55
Sonar 101.64 95.37 101.49 95.36 110.90 129.85
WDBC 47.23 99.89 47.21 99.87 54.31 71.33
Teaching 78.23 65.44 78.12 65.46 82.78 99.54
Parkinson 81.33 98.54 81.42 98.56 89.56 97.90
Thyroid 19.43 99.63 19.28 99.63 26.91 34.06
Blood 305.12 84.75 305.23 84.73 314.31 329.77
Glass 98.35 78.52 98.43 78.55 112.38 125.88
Iris 28.63 99.31 28.65 99.32 36.52 41.65
Vehicle 276.54 90.23 276.43 90.27 291.88 310.33
Haberman 118.76 78.36 118.81 78.34 127.75 146.39
WPBC 87.39 84.46 87.32 84.45 91.34 95.28
Hill-Valley 365.44 75.64 365.41 75.65 374.66 389.00
Mammo 328.37 89.30 328.34 89.32 342.45 355.60
CMC 976.65 61.24 976.61 61.22 995.55 1101.60
Landsat 1181.00 97.97 1182.00 97.98 1209.00 1303.00
Yeast 985.48 68.16 985.43 68.17 993.44 1066.50
Zoo 38.06 98.98 38.05 98.97 42.54 48.09
Monks1 46.00 87.81 46.00 87.80 51.00 57.00
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PTVPSO-SVM, PSO-SVM and GRID-SVM) in terms of the number of SVs and prediction accuracy via 10 runs of 10-fold CV.
From Table 10, it can be seen that the GRID-SVM generated much more number of SVs than both TVPSO-SVM and PTV-
PSO-SVM for all of the cases examined. It is one of the main reasons why the inferior performance acquired by the GRID-
SVM as shown in Table 2. The explanation lies in the fact that the number of SVs is proportional to the generalization error
of SVM [3]. Both TVPSO-SVM and PTVPSO-SVM almost generate the same number of SVs and prediction accuracy on all of
the data sets, the slightly different results may be due to the inexact nature of the optimization process and the randomness
of the data partitions. The approximately identical accuracy and number of SVs of the two methods have verified the cor-
rectness of the parallel design and implementation. Note that the number of SVs on most data sets is not integer, because
they are the average of the 10 runs of 10-fold CV.

As for the cost of computational time, we have computed the running time spent by PTVPSO-SVM, PSO-SVM and Grid-
SVM on all the data sets. Note that the average running time over 10 runs of 10-fold CV were reported here. As shown in
Fig. 7, it can be seen that PTVPSO-SVM need much less CPU time when compared to PSO-SVM thanks to using high perfor-
mance computing technique. In addition, the running time of PTVPSO-SVM is less than that of Grid-SVM in most of the data
sets. It indicates that the parallel implementation has remarkably reduced the computational time, and it confirms the sca-
lability of the developed method as well. It is worth noticing that there were only 8 computers used to act as the computa-
tion nodes in our experiment. With the increasing of the computation nodes, the running time can be further reduced.

6. Conclusions and future work

In this work we present PTVPSO-SVM, a parallel time variant PSO based parameter optimization and feature selection
approach for SVM. The main novelty of this method lies in the adopted objective function which aims at maximizing the
generalization capability of the SVM classifier. The weighted function simultaneously takes into consideration the classifica-
tion performance of SVM and the number of SVs, as well as selected features, and the weight of each sub-objective function is
defined as a linearly increasing/decreasing function along with the iterations. In addition, the proposed method is imple-
mented in an efficient parallel environment which further enhances the performance of SVM classifier to a great extent
in terms of computational time. Moreover, the developed method is adaptive in nature attributed to adaptive control param-
eters. It can explore larger search space by introducing the mutation operators that overcome the premature convergence of
the PSO algorithm. Additionally, the modified binary PSO algorithm has further improved the performance in feature selec-
tion task. The evaluation on a comprehensive set of real-world problems reveals that the proposed method can not only
achieve high prediction accuracy but also compute efficiently owing to the high performance computing technology. More-
over, compared with PSO-SVM and GRID-SVM, the main advantages of our developed PTVPSO-SVM method are that it can
produce much more appropriate model parameters and discriminative feature subset, as well as fewer numbers of SVs.

Based on our empirical analysis, it can be safely concluded that, the developed PTVPSO-SVM method can serve as a prom-
ising alternative tool for parameter optimization and feature selection in SVM. More experiments on larger databases should
be done to confirm the overall superiority of the proposed method. In addition, we plan to develop a more efficient method,
which is optimized with the better scheduling algorithm on scheduling server and scheduling workstation. It should be
noted that the recent trends in computer microprocessor development have shifted from a single powerful core to
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multi-core. Hence, we are going to develop a new method for multi-core computing nodes in order to increase the CPU pro-
cessor load.
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