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Abstract 
 

Due to the fact that many objects in the real world 

can be naturally represented as tensors, tensor 

subspace analysis has become a hot research area in 

pattern recognition and computer vision. However, 

existing tensor subspace analysis methods cannot 

provide an intuitionistic nor semantic interpretation 

for the projection matrices. In this paper, we propose 

Sparse Tensor Principal Component Analysis 

(STPCA), which transforms the eigen-decomposition 

problem to a series of regression problems. Since its 

projection matrices are sparse, STPCA can also 

address the occlusion problem. Experiment on 

Georgia tech database and AR database showed that 

the proposed method outperforms the Multilinear 

Principal Component Analysis (MPCA) in terms of 

accuracy and robustness. 

 

 

1. Introduction 
 

Principal Component Analysis (PCA) is a popular 

vector subspace analysis method for feature extraction. 

PCA aims to maximize the variances in the projected 

subspace by maximizing the trace of covariance 

matrix. A potential shortage of PCA is that it vectorize 

a facial image of size m  by n  to a ( )m n -

dimensional vector. In practice, when PCA is applied 

on the 2D images, one intrinsic problems have been 

found such as, singularity of within-class scatter 

matrices, limited available projection directions, high 

computational cost and a loss of the underlying spatial 

structure information of the images. In order to 

address these problems, Lu et al. [2] introduces a 

multilinear principal component analysis (MPCA) for 

tensor object feature extraction by extended PCA from 

vector to tensor. 

One the common disadvantage amongst all the 

methods mentioned above is that it is hard to give a 

physical or semantic interpretation for the projection 

matrices. However, interpretable models can be 

obtained via variable selection in multiple linear 

regression. Thus in recent years, sparse subspace 

learning has become a hot topic. In [8], Sparse PCA 

(SPCA) was proposed by applying the least angle 

regression and elastic net of 1 -penalized regression 

on regular principal components. However, it is 

difficult that SPCA is applied on 2D gray images due 

to the high dimensional vector created through the 

vectorization. So Xiao and Wang [6] proposed 2D-

SPCA, which is directly calculated on image 

convariance matrix without vectorization. Wang et al. 

used discriminant tensor [5] and sparse discriminant 

tensor [4] to model color space for face recognition. 

In this paper, drawing upon the insights from these 

methods we propose a Sparse Tensor Principal 

Component Analysis (STPCA) for feature extraction. 

The main advantages of STPCA includes: 

 STPCA transforms the eigen-decomposition 

problem into a series of regression problems 

and can give a intuitionistic or semantic 

interpretation. 

 STPCA has the capability to address the 

occlusion problem effectively. 

 

2. Sparse Tensor Principal Component 

Analysis 
 

In this section, we introduce Sparse Tensor 

Principal Component Analysis to extract the feature of 

tensor objects. Due to page limit, the concepts and 

notations of tensor are skipped. For details, please 

refer to [1]. There are M N-order tensor 

1 2 NI I I

m

 
 , 1,2, ,m M  . The STPCA 



algorithm seeks N sparse projection matrices 

{ , 1, , }n nI P

n n N


  U  for transformation: 
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which ensures that the projected tensors m  are 

distributed as far as possible and nU  is sparse enough. 

Here, ‘sparsity’ means that nU  either have a small 

number of nonzero elements or it has lots of zero 

elements. 

The mean tensor and total scatter are defined by: 
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It is reasonable to maximize the total scatter of 

projected tensor   as: 

 
1 , ,{ , 1, , } max .

Nn n N arg    
U U

U  (2) 

N  matrices nU  need to be simultaneously updated 

to satisfy the optimal solution of the criterion function. 

We define n-mode scatter matrix 
( )n  as: 

( )
( ) ( )( ) ( )
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where 
1 1 1n n N n      U U U U U . 

Let , 1, ,n n N U , be the solution to Eq.(2). 

Given all the other projection matrices 1 1, , nU U , 

1, ,n N U U , then the matrix nU  consists of nP  

eigenvectors corresponding to the largest nP  

eigenvalues of matrix 
( )n , which satisfies: 

 
( )n

p p u u  (3) 

where 1[ , , ]
nn P U u u . Since 

( )n  is dependent 

on 1 1 1, , , , ,n n N  U U U U , an iterative 

procedure can be constructed to maximize Eq.(2). For 

details, please refer to [2]. 

The aim of STPCA is not only to maximize Eq.(2) 

but also to make the projection matrices nU  

( 1, ,n N  ) sparse. So, the criterion function of 

STPCA is defined as: 

1 , ,{ , 1, , } max

subject to ( ) , 1, ,

Nn

n n

n N arg

Card K n N

   

  

U U
U

U
 (4) 

where ( )nCard U  denotes the number of non-zero 

elements in each column of sparse projection matrix 

nU . The only difference between Eq.(2) and Eq.(4) is 

a sparseness constraint imposed in Eq.(2). The 

solution to Eq.(4) can be obtained by seeking nP  

vectors pb , such that p pb u , where pu  is 

eigenvector in Eq.(3). 

We combine all objects 1 2 NI I I

m

 
  into a 

( N +1)-order tensor 1 2 NI I I M  
 . 
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Theorem 1 Given 1N    projection matrices 1U , 

, 1nU , 1nU , , NU , let 

1 1 1 1 1 1

T T T T

n n n n N N       U U U U  

Then, 
( )

( ) ( )

n T

n n G G  

Proof: The proof is skipped due to the limit pages. 

Theorem 2Let 1 2, , ,
nPu u u  denote the eigenvectors 

of problem Eq.(3) corresponding to the nP  largest 

eigenvalues 1 2 nP      of matrix 
( )n . Let 

1[ , , ]
n n nI P P  A a a  and 1[ , , ]

n n nI P P  B b b . 

For any 0  , then A  and B  are the solutions of 

the following problem: 

2 2

( ) ( )
,

1 1

( :, ) (:, )

subject to

min
n nI P

T

n n p

i j

T

i i 
 

 



 
A B

H AB H b

A A I

‖ ‖ ‖ ‖
(5) 

where ( ) (:, )n iH  denotes the i st column of the mode 

n  unfolding matrix ( )nH  and 

1 1 1n n n NI I I I I M        . Then 

p pb u  for 1, 2, , np P  . 

Proof: The proof is similar to Theorem 3 in [8] 

According to Theorem 2, the generalized 

eigenvalue of Eq.(3) is transformed to the regression 

problem of Eq.(5). The regression problem (5) can be 

solved by iteratively fixing A  and B . 

Given a fixed B , we can ignore 
2

1

nP

p

p




 b‖ ‖  in 

Eq.(5) and only try to minimize 
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The solution is obtained by a reduced rank form of the 

Procrustes rotation according to Theorem 4 in [8]. We 

compute the SVD 



( ) ( )( )
T T

n n H H B UDV  

and set 
TA UV . 

Given a fixed A , since A  is orthogonal, let A  

be any orthogonal matrix such that [ ; ]A A  is 

n nI I  orthogonal, where [ ; ]A A  means to 

concatenate matrices A  and A  along row. Then 
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Because A  is fixed, so the optimal B  minimizing 

Eq.(5) should minimize: 
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B
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which is equivalent to nP  independent ridge 

regression problems. The eigen-decomposition 

problem is transformed into nP  independent ridge 

regression problems. However, the ridge regression 

does not provide a sparse solution. To obtain a sparse 

solution, Lasso adds an 1  penalty to the objective 

function in the regression problem. So Eq.(7) can be 

transformed to: 

 

2

( ) ( ) 1, 1min
p

T T
j n p n p p parg   

b
b H a H b b‖ ‖ ‖ ‖

where 
T IA A , 1, 2, np P  . The above 

equation is the form of elastic net regression problem 

[8]. So in this paper, Elastic Net is used to obtain the 

sparse solutions. Due to the nature of the 1  penalty, 

some coefficients will be shrunk to zero if 1, p  is 

large enough, that is, 1, p  controls the sparseness. 

 

3. Experiments 
 

We conducted the experiments on two well-known 

face database Georgia Tech  and AR face database. A 

nearest neighbor classifier based on Manhattan 

distance  is used for recognition. 

The sample images of one individual from the 

Georgia Tech database are shown in Fig. 1. 

 
Figure 1. Sample images on the Georgia Tech. 

 
Figure 2. the experiments on Georgia Tech database. 

(a)the variation of 1P , 2P  and recognition rate of 

MPCA.(b)the recognition rate of STPCA versus 

1( )Card U  and 2( )Card U  when 1 12P   and 

2 4P  . 

 
Figure 3. Recognition rate of two methods on Georgia 

Tech face database. 

In this experiment, for both algorithms, the 

convergence threshold  was set 0.001. It is difficult 

to determine the optimal dimensionality of the 

projected subspace. We searched 1P  from 1 to 32 and 

2P  from 1 to 32, and selected the projected 

dimensionality where MPCA had the best 

performance (see Fig. 2(a)). In order to compare 

STPCA with MPCA, we set the projected 

dimensionality of STPCA as the projected 

dimensionality which MPCA obtained the best 

performance. Changing the sparseness of projection 

matrices, different recognition rates were obtained. 

The recognition rates versus the sparseness are shown 

in Fig. 2(b). Based on Fig. 2, we set 1 12P  , 2 4P  , 

1( ) 4Card U , 2( ) 16Card U  in the following 

experiment. Each individual's images were divided 

into 5 bits, and each bit had 3 images. Leave-one-out 

cross-validation was performed, i.e. for each 



individual's images, 4 bits were used for training and 

the remaining bit was used for testing. Fig. 3 is the 

recognition rates of MPCA and STPCA. From the 

experiment's result, we can draw a conclusion that 

STPCA can extract the features of the face images 

more effectively than MPCA.  

We test the robustness of the proposed STPCA. We 

focus on cases where there are occlusions in the 

testing set. The experiment was performed in AR face 

database. All images were cropped into 32 32  

pixels, the sample images of one person are shown in 

Fig. 4. In this experiment, we use the face images 

without occlusions for training (first row in Fig. 4) and 

the images with occlusions for testing (second row in 

Fig. 4). 

 
Figure 4. Sample images on the AR database. 

 

The MPCA can achieve its maximal recognition 

rate 59.17% when the samples are projected into a 

subspace 
32 32

. In order to compare STPCA with 

MPCA, STPCA also projected the samples into the 

same dimension. Through changing the sparseness of 

projection matrices, different recognition rates are 

obtained. The recognition rates are shown in Table 1 

when the samples are projected into a subspace 
32 32

. From the table we can see that the algorithm 

we proposed has a higher recognition rate than MPCA. 

In MPCA, the whole 2D image is projected to the non-

sparse optimal projection 1 2,U U , i.e 

1 1 2 2m m  U U , since the elements in 1U  

2U  are non-zero, each pixel of the image matrix is 

contributive to the feature of m . However, if 1U  

2U  are sparse matrices, only a subset of pixel of the 

images is contributive to the m . So, STPCA can 

address the problem of face obscured effectively. 

 

Table 1. the recognition rates  on the AR face database 

 PCA MPCA STPCA 

Recognition rate(%) 22.83 59.17 75.33 

1U  1024 32×32 32×32 

2U  - 32×32 32×32 

Card( 1U ), Card( 2U ) - - 16,16 

In order to investigate the intuitionistic or semantic 

interpretation of STPCA, we illustrate the eigentensor 

representation results in Fig. 5, and eigentensor 

1 2 1 1 2 1(:, ) (:, )p pU p p U U . Based on the 

projection vectors of each method, facial images can 

be mapped into each subspace spanned by 

corresponding a eigentensors. The black points 

represent the features corresponding to non-zero 

coefficients of eigentensor. To be more clear, the 

figure is formed from the non-zero elements in 

eigentensors, which is then used to construct a mask 

template, which masks the original face image. From 

the figure, we can conclude that the areas such as the 

nose, cheek, and the area around the eyes, mouth and 

the edges of the facial image, are the main contributors 

to the new transformed features. For example, the 

sixth eigentensor in the first row is made up of the 

black points of the original features, which include the 

important areas of the cheek, and the area around the 

nose and mouth. These areas match the conclusion in 

[3]. 

 
Figure 5. Some eigentensors 

References 
 
 [1] T. Kolda and B. Bader. Tensor decompositions and 

applications. SIAM review, 51(3):455–500, 2009. 

[2] H. Lu, K. Plataniotis, and A. Venetsanopoulos. MPCA: 

Multilinear principal component analysis of tensor 

objects. Neural Networks, IEEE Transactions on, 

19(1):18–39, 2008. 

[3] O. Ocegueda, S. Shah, and I. Kakadiaris. Which parts of 

the face give out your identity? In Computer Vision and 

Pattern Recognition (CVPR), 2011 IEEE Conference on, 

pages 641–648. IEEE, 2011. 

 [4] S.Wang, J. Yang, M. Sun, X. Peng, M. Sun, and C. 

Zhou. Sparse tensor discriminant color space for face 

verification. IEEE Transactions on Neural Networks and 

Learning Systems, 23(6):876 – 888, 2012. 

[5] S. Wang, J. Yang, N. Zhang, and C. Zhou. Tensor 

discriminant color space for face recognition. Image 

Processing, IEEE Transactions on, 20(9):2490–2501, 

2011. 

[6] C. Xiao and Z. Wang. Two-dimensional sparse principal 

component analysis: A new technique for feature 

extraction. In Natural Computation (ICNC), 2010 Sixth 

International Conference on, volume 2, pages 976–980. 

IEEE. 

[7] H. Zou and T. Hastie. Regression shrinkage and selection 

via the elastic net, with applications to microarrays. JR 

Statist. Soc. B, 2004. 

[8] H. Zou, T. Hastie, and R. Tibshirani. Sparse principal 

component analysis. Journal of computational and 

graphical statistics, 15(2):265–286, 2006 




