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Abstract. The subspace transformation plays an important role in the
face recognition. LPP, which is so-called the Laplacianfaces, is a very
popular manifold subspace transformation for face recognition, and it
aims to preserve the local structure of the samples. Recently, many vari-
ants of LPP are proposed. LPP is a baseline in their experiments. LPP
uses the adjacent graph to preserve the local structure of the samples.
In the original version of LPP, the local structure is determined by the
parameters t (the heat kernel) and k (k-nearest neighbors) and directly
influences on the performance of LPP. To the best of our knowledge,
there is no report on the relation between the performance and these
two parameters. The objective of this paper is to reveal this relation on
several famous face databases, i.e. ORL, Yale and YaleB.
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1 Introduction

As one of the most important biometric techniques, face recognition has gained
lots of attentions in pattern recognition and machine learning areas. The sub-
space transformation plays an important role in the face recognition. Feature
extraction is one of the central issues for face recognition. Subspace transfor-
mation (ST) is often used as a feature extraction method. The idea of ST is
to project the feature from the original high dimensional space to a low dimen-
sional subspace, which is called projective subspace. In the projective subspace,
the transformed feature is easier to be distinguished than the original one.

Principal Component Analysis (PCA)[12] is a widely used subspace transfor-
mation. It attempts to find the projective directions to maximize variance of the
samples. To improve classification performance, LDA[1] encodes discriminant in-
formation by maximizing the ratio between the between-class and within-class
scatters. LDA can be thought of as an extension with discriminant information
of PCA. Both PCA and LDA focus on preserving the global structure of the sam-
ples. However, Seung[10] assumed that the high dimensional visual image infor-
mation in the real world lies on or is close to a smooth low dimensional manifold.
⋆ Corresponding author



Inspired by this idea, multiple manifold dimensionality reduction methods that
preserve the local structure of samples have been proposed, such as ISOMAP[11],
LLE[9], Laplacian Eigenmaps[2] etc. Locality Preserving Projections (LPP)[5] is
a linear Laplacian Eigenmaps. Its performance is better than those of PCA and
LDA for face recognition[6]. Recently, many variants[15][3][13][16][7][14] of LPP
are proposed. LPP is a baseline in their experiments.

However, the performance of LPP depends mainly on its underlying adja-
cent graph whose construction suffers from the following points: (1)such adja-
cent graph is artificially constructed; (2) it is generally uneasy about assigning
appropriate values for the neighborhood size k and heat kernel parameter t in-
volved in graph construction. To the best of our knowledge, there is no report
on the relation between the performance and these two parameters k and t. The
objective of this paper is to reveal this relation on several famous face databases.

2 Locality Preserving Projections

Given a set of N samples X = {x1,x2, . . . ,xN},xi ∈ R
D, we attempt to find a

transformation matrix W of size D× d to map: yi = WTxi,yi ∈ R
d, such that

yi easier to be distinguished in the projective subspace.
Locality Preserving Projections (LPP)[5] attempts to preserve the local struc-

ture of the samples in the low-dimensional projected subspace as much as possi-
ble. The local structure of the samples is measured by constructing the adjacency
graph G. There are two ways to construct G: ε− neighborhoods and k nearest
neighbors. The similarity matrix S is defined by the following two ways:

1. 0-1 ways

Sij =

{

1 nodes i and j are connected in G

0 otherwise.
(1)

2. Heat kernel

Sij =

{

exp(−‖xi − xj‖
2/2t2) nodes i and j are connected in G

0 otherwise.
(2)

where t is a parameter that can be determined empirically. When t is large
enough, exp(−‖xi − xj‖

2/t) = 1, heat kernel becomes 0-1 ways. Obviously, 0-1
ways is a special case of the heat kernel. In order to contain no any discriminant
information, we do not use any label information to construct the similarity
matrix S. The criterion function of LPP is as follows:

min
W

∑

i,j

(yi − yj)
2Sij (3)

The criterion function incurs a heavy penalty if neighboring points xi and xj

are mapped far apart. Therefore, minimizing it is an attempt to ensure that if
xi and xj are close, then yi and yj are close, as well. Finally, the transformation



matrix consists of the eigenvectors associated with the smallest eigenvalues of
the following generalized eigenvale problem:

XLXTw = λXDXTw (4)

where D is a diagonal matrix; its entries Dii =
∑

j Sij measure the local density
around xi. L = D− S is the Laplacian matrix.

We define SL = XLXT and SD = XDXT , and rewrite Eq. (4) as follows:

SLw = λSDw (5)

Theorem 1. Let N and D be the dimension of the sample and the number of

the samples,respectively .If N > D, then the rank of SL is at most N − 1 and

the rank of SD is at most N .

Proof. According to the definition of the Laplacian matrix and the fact that the
similarity matrix is symmetrical.
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(6)

we add the 2rd, 3nd,... Nth rows into the 1st row, and obtain |L| = 0. So, the
rake of L is at most N − 1. It is known that the maximum possible rank of the
product of two matrices is smaller than or equal to the smaller of the ranks of
the two matrices. Hence, rank(SL) = rank(XLXT ) ≤ N − 1. Similarly, we have
rank(SL) ≤ N .

From Theorem 1, LPP like LDA also suffers from the SSS problem. Another
problem is how to measure he local structure of the samples. LPP uses the
similarity matrix S. If every entries are the same, the local structure of the
samples is not preserved. Without loss of generality, each entry in S is set as
1/N2, i.e., L = 1

N
I − 1

N2 ee
T , where e ia a vector, whose entries are 1. The

matrix SL is equivalent to the covariance matrix in PCA[6]. In this case, LPP
degenerates into PCA. Obviously, the performance of LPP dependents on how
construct the similarity matrix S. In next section, the performance of LPP with
respect to the neighborhood size k and heat kernel parameter t on several famous
face databases will be reported.

3 Experiment

3.1 Database and experimental set

Three well-known face database ORL1, Yale2 and the Extended Yale Face Database
B[4] (denoted by YaleB hereafter) were used in our experiments.

1 http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
2 http://cvc.yale.edu/projects/yalefaces/yalefaces.html



The ORL database collects images from 40 individuals, and 10 different im-
ages are captured for each individual. For each individual, the images with dif-
ferent facial expressions and details are obtained at different times. The face in
the images may be rotated, scaled and be tilting in some degree. The sample
images of one individual from the ORL database are shown in Figure 1.

Fig. 1. Sample images of one individual from the ORL database.

There are total of 165 gray scale images for 15 individuals where each individ-
ual has 11 images in Yale face database. The images demonstrate variations in
lighting condition, facial expression (normal, happy, sad, sleepy, surprised, and
wink). The sample images of one individual from the Yale database are showed
in Figure 2.

Fig. 2. Sample images of one individual in the YALE database.

The YaleB contains 21888 images of 38 individuals under 9 poses and 64
illumination conditions. A subset containing 2414 frontal pose images of 38 in-
dividuals under different illuminations per individual is extracted. The sample
images of one individual from the YaleB database are showed in Figure 3.

3.2 the analysis of the performance with respect to t and k

In our experiments, the similarity matrix S is governed by two parameters: the
neighborhood size k and heat kernel parameter t. k is searched from {2, 3, . . . , N−
1}. Each image vector is normalized before calculating the similarity matrix
S. We randomly split the image samples so that p (for ORL and yale, p =
2, 3, 4, 5, 6, 7, 8; for YaleB, p = 5, 10, 20, 30, 40, 50) images for each individual are
used as the training set and the rest are used as the testing set.

In yale database, p is set as 2 i.e. 30 samples in the training set, and t is
searched from {1, 1.1, 1.2, . . . , 1.9, 2, 3, . . . , 9, 10, 20, . . . , 90, 100}. This process is
repeated 50 times. The results of three of them are plotted in Fig. 4. From
the figure, little influence has been brought to the performances due to the
variation of t value. Due to normalization of the image vectors, when t > 2,
exp(−‖xi − xj‖

2/t) approximates 1. From the figure, we can also see that in



Fig. 3. Sample images of one individual from the YaleB database.
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Fig. 4. The performance of LPP vs. the two parameters k and t on Yale face database



the same the number of the training samples, the top performance does not also
incur in the same neighborhood size.

The same experiments are conducted on the ORL, Yale, YaleB face databases.
t is searched from {1, 1.1, 1.2, . . . , 1.9, 2, 3, 4, 5}. The several results are plotted
in Fig. 5. From the figure, the top performance incurs on when the neighborhood
size k is greater than the half of the numbers of the samples. And we can also
see the fact that the performance is sensitive to the parameter k. This stems
from the fact that the essential manifold structure of samples. An alternative
interpretation is that facial images lie on multi-manifolds instead of a single
manifold. Recently, the efforts of research on multi-manifolds for face recognition
are proposed[8]. In order to verify the validation of the assumption that the
performance is insensitive to the heat kernel parameter t and the top performance
incurs in the case that the neighbors size k is greater than the half of the number
of the samples, 50-time cross-validations are performed on Yale database. The
results are illustrated in Fig. 6.

1 1.5 2 5
2

80

160

240

319  

The heat kernel parameter t

 

T
he

 n
ei

gh
bo

rh
oo

d 
si

ze
 k

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

(a) 320 samples on ORL

1 1.5 2 5
2

48

95

143

189  

The heat kernel parameter t

 

T
he

 n
ei

gh
bo

rh
oo

d 
si

ze
 k

0.48

0.49

0.5

0.51

0.52

0.53

0.54

(b) 190 samples on YaleB

Fig. 5. The performance of LPP vs. the two parameters k and t

4 Conclusion

LPP is a very popular subspace transformation method for face recognition.
Recently, its many variants have been proposed. However, their performances
mainly depend on how to construct the adjacent graph, which artificially con-
structs the local structure. To the best of our knowledge, there is no report on
the relation between the performance of LPP vs. the nearest neighbor size k
and the heat kernel parameter t. This issue is discussed in this paper. We find
that the performance is insensitive to the heat kernel parameter t and the top
performance incurs in the case that the neighbors size k is greater than the half
of the number of the samples.

Our future researches will focus on the performance of the variants of LPP vs.
the two parameters t and k. We also focus on the multi-manifold face recognition.
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Fig. 6. the grid-search parameter result on yale database.
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