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Abstract 

 
 As the core data structure of FCA (Formal Concept 

Analysis), concept lattice has been widely used in the field of 
machine learning and data mining. It is useful to study 
algorithms of building concept lattice in practical 
applications. There are several of algorithms of building 
concept lattice which have been developed. This paper 
presents an efficient algorithm named CMCG (Concept-
Matrix based Concepts Generation) for building concept 
lattice and corresponding Hasse graph based on concept-
matrix which is a novel notion. The Algorithm CMCG finds 
all lower neighbors of concept by using the rank of attribute 
in concept-matrix and generate corresponding Hasse graph. 
The validity of the algorithm was proved in theory and by 
experiment. The pseudo codes of CMCG Algorithm are 
given and that performance of CMCG is superior to one of 
Lattice Algorithm is proved at end. 

 
Keywords: Concept lattice, rank of matrix, formal concept 
analysis 
 
1. Introduction 
 

Formal Concept Analysis (FCA) was developed by 
professor Wille in 1982 [1]. Concept lattice, the core data 
structure in Formal Concept Analysis, has been widely used 
in data mining and knowledge discovery. For example, 
Sahami [2] induces classification rules using a concept 
lattice. Another example is that Zaki [3] finds all closed 
itemsets   by a concept lattice.  

Every node of concept lattice is a formal concept 
consisting of extent and intent. Concept lattice embodies the 
relations between extension and intension among these 
concepts by Hasse graph.  

However, the efficiency of building concept lattice is 
most unsatisfactory. So people research it widely 
nowadays and propose any different algorithms which can 
be divided into two main categories, batch construction [4; 
5] and incremental construction [6]. This paper presents an 
efficient algorithm named CMCG for building concept 

lattice and corresponding Hasse graph based on concept-
matrix which is a novel notion. 

 
2. Problem definition and related work 
 

To make the paper self-contained, we introduce the basic 
notions of formal concept analysis [7]. 

Definition 1. A formal context is a triple: , , , 
where  and  are two sets, and  is a relation between  
and . , … , , each  is called an object. , … , , each  is called an attribute. 

In a formal context , , , if , , we say 
that the attribute  is an attribute of the object , or that  
verifies . ,  is denoted by 1, and ,  is 
denoted by 0. Thus, a formal context can be represented by a 
matrix only with 0 and 1. We say that the matrix is the 
context-matrix of . [8] Table 1. represents a formal 
context. Figure 1. shows the matrix of the formal context 
represented in Table 1. 

Table 1. A formal context 

a b c d e f g h
1 1 1 1 0 0 0 0 0
2 1 1 0 1 0 0 1 0
3 0 1 1 0 1 0 0 0
4 1 0 0 1 1 0 1 0
5 0 0 1 0 0 1 0 0
6 0 0 0 1 0 0 0 0
7 0 0 0 0 0 0 0 1
Definition 2. Let , ,  be a formal context. We 

define a function  that produces the set of their 
common attributes for every set  of objects to know 
which attributes from  are common to these entire objects: | , ,  

Dually, we define  for subset of attributes ,   
denotes the set consisting of those objects in  that have all 
the attributes from : | , ,  

These two functions are used to determine a formal 
concept. 

Definition 3. Let , ,  be a formal context. A 
pair ,  is called a formal concept of , for short, a 
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concept, if and only if , ,  and 
.  is called extent,  is called intent. 

1 1 1 1 0 0 0 0 0
2 1 1 0 1 0 0 1 0
3 0 1 1 0 1 0 0 0

 4 1 0 0 1 1 0 1 0
5 0 0 1 0 0 1 0 0
6 0 0 0 1 0 0 0 0
7 0 0 0 0 0 0 0 1

a b c d e f g h

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠  

Figure 1. The matrix of the formal context 
represented in Table 1. 

Definition 4. Let , ,  be a formal context. The 
set of all concepts of  is denoted by , ,  
and ,  are two concepts in . A partial 
ordering relation  is defined on  by: 

 or   
We say that  is called a superconcept of  and  is 

called a subconcept of .  and the partial ordering 
relation  form a compete lattice called the concept lattice 
of  and denoted by . 
  The context in Table 1. has 16 concepts. The line diagram 
in Figure 2. represents the concept lattice of this context 

 
Definition 5. Let , ,  be a formal context.  

and  are two concepts in . If  and there is no 
concept  in  fulfilling ,  is called a 
lower neighbor of  and  is called a upper neighbors of 

. 
The set of all lower neighbors of a given concept is a 

subset of the set consisting of all subconcepts of it. 
 

3. CMCG algorithm 
 
3.1. Definitions and Theorem about Concept-
Matrix 
 

Definition 6. Let K O, A, R  be a formal context. The 
concept-matrix of C is the matrix consisting of these rows 
what are the corresponding rows of the each element x in set X in context-matrix of K.  

1 1 1 1 0 0 0 0 0
2 1 1 0 1 0 0 1 0
4 1 0 0 1 1 0 1 0

a b c d e f g h

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠  

Figure 3. The concept-matrix of concept ,  

Figure 3. represents the concept-matrix of concept 124, . 
Definition 7. Let , ,  be a formal context. ,  is a concept in . If the count of 1s in the 

corresponding column of the attribute  in the concept-
matrix of  is , we say that the rank of attribute  in 
concept-matrix of concept  is , denoted by . If | , , we say that the rank of 
concept  is .  

Property 1. The count of objects of subconcept of 
concept  is equal or lesser than .  

Definition 8. Let , ,  be a formal context. ,  is a concept in . Given subset , 
 denotes the set consisting of those objects in X that 

have all the attributes from : | , ,  
Theorem 1. Let , ,  be a formal context. ,  is a concept in . The rank of concept C is 

m. For | , , , . Then  is a lower neighbor of . 
Proof. By Definition8, we have | | . Suppose 

there exist , , where . We can obtain | | | | | | . By Property 1, we have | | . This result contradicts with | |. Then C  is 
a lower neighbor of C. 

Theorem 2. Let , ,  be a formal context. ,  is a concept in . The rank of concept  is m. ,  is a subconcept of , where 
 and 0 . For , | , | | , there exist 

⊄ . Then  is a lower neighbor of . 
Proof. Suppose there exist , , where 

,. We have | | | | | | , it 
implies that , | , | | , and 

⊄ . On the other hand  implies that 
. This result contradicts with ⊄ . Then 

 is a lower neighbor of .  
 
3.2. CGCM algorithm 
 

Now we have discussed the principle for generating 
concepts based on concept-matrix. In this section, the 
corresponding algorithm is addressed. The main procedure 
of the algorithm will generate the largest concept ,  and 
put it into a graph. Then all subnodes of each leaf-node in 

, abcdefgh  

123, b  

1234567,  

124, a  246, d  34, e  135, c 7, h5, cf12, ab  13, bc  24, adg
1, abc 3, bce2, abdg  4, adeg  

Figure 2. Concept lattice for the context of Table 1 
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the graph is generated by calling function Subnode() and 
added into the graph. The pseudo codes of the main 
procedure are given below. 
Algorithm CMCG 

Input: Formal Concept K O, A, R  
Output: all concepts on K and the corresponding Hasse 
graph G 1: Initialize a graph ; 2: Generate concept , , and add vertex , into ; 3: all leafnodes in ; 4: if | | 1 and ,  in  then return;  5: foreach   in      6: Subnodes ; 7: foreach  in   8: add vertex  into ; 9: add edge ,  into ; 10: loop  11: loop 

It is necessary to search if node  is in graph  in Line 
8, then add vertex into graph . The runtime of this search 
increases quadratically with the size of the concept lattices.  
For this purpose all concepts are stored in a search tree in 
Lattice Algorithm. For a search tree, with the increase of the 
number of the nodes, the runtime of this search is more. 
Besides, if a search tree is substituted for an AVL tree, a 
sequence of rotations is performed to maintain balance of 
AVL tree when adding a node, which is time-consuming.  

In CMCG Algorithm, all concepts are stored in a Trie 
tree. A concept can be identified with its intent or extent, so 
we let the intent of a concept as key to identify this concept.  
Because of a given formal context , , , there is 
usually | | | |. The intent of a concept is expressed as a 
fix-length string consisting of 0 or 1. The length of this 
string is| | . The intent of all concepts is stored in a Trie 
tree whose degree is 2 and depth is | |. For example, it’s 
intent  of concept 5,  is expressed as 00100100. 

Its advantages are followed: i) the runtime of searching 
for a node is constant which is independent of the number of 
the nodes. ii) Because it takes key words separately to the 
nodes of Tire tree for storage, it needs less space.  

Then we introduce the idea of the function Subnodes(). 
The set of all lower neighbors of concept C is obtained by 
computing the ranks of every attribute  in concept-
matrix of concept . The set is denoted by .  

Let’s examine how to get all lower neighbors of a given 
concept  using the following example. 

For the formal context shown in Table 1, we get all lower 
neighbors of concept 124, . Let  is the rank of 124, . 
So 2. It can be drawn form Figure 3  that  2 the rank of . According to 
Theorem 1, a lower neighbor of 124,  
is , 12,  . Since the corresponding 
column of   is same as one of , the attribute  in Theorem 

1 can be considered as a set consisting of attributes which 
columns are same in order to avoid redundant computation. 
So , 24,  is a lower neighbor 
of  124, . 

Then let 1 1 and 1. Since 1 12 , c ,  is NOT a lower 
neighbor of 124,  according to Theorem 2. And for the 
same reason, ,  is NOT a lower neighbor 
of 124, . Therefore, all lower neighbors of 124,  are 12,  and 24, . The pseudo codes of the function 
Subnodes() are given below. 
Function Subnodes(C)

Input: Concept ,  
Output: the set neighbors of all lower neighbors of 
Concept  

1: ;  
2: if | | 1 then return , ; 
3:  the concept-matrix of concept C; 
4: compute the rank of the every attribute in  ; 
5: the rank of  ; 
6: if 1 then return , ; 
7: do while 0 
8:  the set of the attributes which ranks equal to  
9: do while  

10:  the set consisting of a attribute  from  and 
these attributes from  which corresponding 
columns are same as column of  in . 

11:  
12:  13:  
14: if C X , Y , where ⊄   

then , ; 
15:  loop 
16:  1; 
17:  loop 
18: return ;
 

4. Evaluation 
 

We conducted a set of tests in which both variants of 
CMCG have been compared to the algorithm Lattice. The 
experiments were performed on a 1.7 GHz Intel processor 
with 1.0 GB main memory, running Linux 2.65 system. 
Both algorithms were implemented in C++.  
The experiment used 2 groups of data where are randomly 
generated by Galicia(http://www.iro.umontreal.ca/~galicia/). 
Group One corresponding context tables were 50×20, 
50×25, 50×30, … , 50×200 elements. Group Two 
corresponding context tables were 50×20, 100×20, 150×20, 
… , 3000×20 elements. The context fill ratio which is the 
quotient of |R| and |O| |A| is 30%.  
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Figure 4. Running time of algorithms versus lattice size on 

Group One 
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Figure 5. Running time of functions which is  to get all 

lower/supper neighbors of a given concept  versus lattice 
size on Group One 
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Figure 6. Running time of algorithms versus lattice size on 

Group Two 

From above several figures, It can be drawn that if the 
number of attributes is constant, the cost time of CMCG 
Algorithm is less with the increase of the number of objects. 
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Figure 7. Running time of functions which  are  to get all 
lower/supper neighbors of a given concept  versus lattice 

size on Group Two 

5. Conclusion 
 
  The theory of concept lattice is an effective tool for 
knowledge representation and knowledge discovery, and is 
applied to many fields. This paper presents an algorithm of 
generating concept lattice with Hasse based on concept-
matrix. By experiment the effectiveness of CMCG 
Algorithm was proved contrasting to Lattice Algorithm. 
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