
An Algorithm based on Concept-Matrix for
 Building Concept Lattice with Hasse

Sujing Wang
Jilin University

sujingwang@hotmail.com

Zhen Chen
Jilin University

chenzhen@jlu.edu.cn

Dongjing Wang
Nanjing University of IST

rpcwangdongjing@163.com

Abstract

 As the core data structure of FCA (Formal Concept

Analysis), concept lattice has been widely used in the field of
machine learning and data mining. It is useful to study
algorithms of building concept lattice in practical
applications. There are several of algorithms of building
concept lattice which have been developed. This paper
presents an efficient algorithm named CMCG (Concept-
Matrix based Concepts Generation) for building concept
lattice and corresponding Hasse graph based on concept-
matrix which is a novel notion. The Algorithm CMCG finds
all lower neighbors of concept by using the rank of attribute
in concept-matrix and generate corresponding Hasse graph.
The validity of the algorithm was proved in theory and by
experiment. The pseudo codes of CMCG Algorithm are
given and that performance of CMCG is superior to one of
Lattice Algorithm is proved at end.

Keywords: Concept lattice, rank of matrix, formal concept
analysis

1. Introduction

Formal Concept Analysis (FCA) was developed by
professor Wille in 1982 [1]. Concept lattice, the core data
structure in Formal Concept Analysis, has been widely used
in data mining and knowledge discovery. For example,
Sahami [2] induces classification rules using a concept
lattice. Another example is that Zaki [3] finds all closed
itemsets by a concept lattice.

Every node of concept lattice is a formal concept
consisting of extent and intent. Concept lattice embodies the
relations between extension and intension among these
concepts by Hasse graph.

However, the efficiency of building concept lattice is
most unsatisfactory. So people research it widely
nowadays and propose any different algorithms which can
be divided into two main categories, batch construction [4;
5] and incremental construction [6]. This paper presents an
efficient algorithm named CMCG for building concept

lattice and corresponding Hasse graph based on concept-
matrix which is a novel notion.

2. Problem definition and related work

To make the paper self-contained, we introduce the basic
notions of formal concept analysis [7].

Definition 1. A formal context is a triple: , , ,
where and are two sets, and is a relation between
and . , … , , each is called an object. , … , , each is called an attribute.

In a formal context , , , if , , we say
that the attribute is an attribute of the object , or that
verifies . , is denoted by 1, and , is
denoted by 0. Thus, a formal context can be represented by a
matrix only with 0 and 1. We say that the matrix is the
context-matrix of . [8] Table 1. represents a formal
context. Figure 1. shows the matrix of the formal context
represented in Table 1.

Table 1. A formal context

a b c d e f g h
1 1 1 1 0 0 0 0 0
2 1 1 0 1 0 0 1 0
3 0 1 1 0 1 0 0 0
4 1 0 0 1 1 0 1 0
5 0 0 1 0 0 1 0 0
6 0 0 0 1 0 0 0 0
7 0 0 0 0 0 0 0 1
Definition 2. Let , , be a formal context. We

define a function that produces the set of their
common attributes for every set of objects to know
which attributes from are common to these entire objects: | , ,

Dually, we define for subset of attributes ,
denotes the set consisting of those objects in that have all
the attributes from : | , ,

These two functions are used to determine a formal
concept.

Definition 3. Let , , be a formal context. A
pair , is called a formal concept of , for short, a

1-4244-1312-5/07/$25.00 © 2007 IEEE 5588

concept, if and only if , , and
. is called extent, is called intent.

1 1 1 1 0 0 0 0 0
2 1 1 0 1 0 0 1 0
3 0 1 1 0 1 0 0 0

 4 1 0 0 1 1 0 1 0
5 0 0 1 0 0 1 0 0
6 0 0 0 1 0 0 0 0
7 0 0 0 0 0 0 0 1

a b c d e f g h

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Figure 1. The matrix of the formal context
represented in Table 1.

Definition 4. Let , , be a formal context. The
set of all concepts of is denoted by , ,
and , are two concepts in . A partial
ordering relation is defined on by:

 or
We say that is called a superconcept of and is

called a subconcept of . and the partial ordering
relation form a compete lattice called the concept lattice
of and denoted by .
 The context in Table 1. has 16 concepts. The line diagram
in Figure 2. represents the concept lattice of this context

Definition 5. Let , , be a formal context.

and are two concepts in . If and there is no
concept in fulfilling , is called a
lower neighbor of and is called a upper neighbors of

.
The set of all lower neighbors of a given concept is a

subset of the set consisting of all subconcepts of it.

3. CMCG algorithm

3.1. Definitions and Theorem about Concept-
Matrix

Definition 6. Let K O, A, R be a formal context. The
concept-matrix of C is the matrix consisting of these rows
what are the corresponding rows of the each element x in set X in context-matrix of K.

1 1 1 1 0 0 0 0 0
2 1 1 0 1 0 0 1 0
4 1 0 0 1 1 0 1 0

a b c d e f g h

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

Figure 3. The concept-matrix of concept ,

Figure 3. represents the concept-matrix of concept 124, .
Definition 7. Let , , be a formal context. , is a concept in . If the count of 1s in the

corresponding column of the attribute in the concept-
matrix of is , we say that the rank of attribute in
concept-matrix of concept is , denoted by . If | , , we say that the rank of
concept is .

Property 1. The count of objects of subconcept of
concept is equal or lesser than .

Definition 8. Let , , be a formal context. , is a concept in . Given subset ,
 denotes the set consisting of those objects in X that

have all the attributes from : | , ,
Theorem 1. Let , , be a formal context. , is a concept in . The rank of concept C is

m. For | , , , . Then is a lower neighbor of .
Proof. By Definition8, we have | | . Suppose

there exist , , where . We can obtain | | | | | | . By Property 1, we have | | . This result contradicts with | |. Then C is
a lower neighbor of C.

Theorem 2. Let , , be a formal context. , is a concept in . The rank of concept is m. , is a subconcept of , where
 and 0 . For , | , | | , there exist

⊄ . Then is a lower neighbor of .
Proof. Suppose there exist , , where

,. We have | | | | | | , it
implies that , | , | | , and

⊄ . On the other hand implies that
. This result contradicts with ⊄ . Then

 is a lower neighbor of .

3.2. CGCM algorithm

Now we have discussed the principle for generating
concepts based on concept-matrix. In this section, the
corresponding algorithm is addressed. The main procedure
of the algorithm will generate the largest concept , and
put it into a graph. Then all subnodes of each leaf-node in

, abcdefgh

123, b

1234567,

124, a 246, d 34, e 135, c 7, h5, cf12, ab 13, bc 24, adg
1, abc 3, bce2, abdg 4, adeg

Figure 2. Concept lattice for the context of Table 1

1-4244-1312-5/07/$25.00 © 2007 IEEE 5589

the graph is generated by calling function Subnode() and
added into the graph. The pseudo codes of the main
procedure are given below.
Algorithm CMCG

Input: Formal Concept K O, A, R
Output: all concepts on K and the corresponding Hasse
graph G 1: Initialize a graph ; 2: Generate concept , , and add vertex , into ; 3: all leafnodes in ; 4: if | | 1 and , in then return; 5: foreach in 6: Subnodes ; 7: foreach in 8: add vertex into ; 9: add edge , into ; 10: loop 11: loop

It is necessary to search if node is in graph in Line
8, then add vertex into graph . The runtime of this search
increases quadratically with the size of the concept lattices.
For this purpose all concepts are stored in a search tree in
Lattice Algorithm. For a search tree, with the increase of the
number of the nodes, the runtime of this search is more.
Besides, if a search tree is substituted for an AVL tree, a
sequence of rotations is performed to maintain balance of
AVL tree when adding a node, which is time-consuming.

In CMCG Algorithm, all concepts are stored in a Trie
tree. A concept can be identified with its intent or extent, so
we let the intent of a concept as key to identify this concept.
Because of a given formal context , , , there is
usually | | | |. The intent of a concept is expressed as a
fix-length string consisting of 0 or 1. The length of this
string is| | . The intent of all concepts is stored in a Trie
tree whose degree is 2 and depth is | |. For example, it’s
intent of concept 5, is expressed as 00100100.

Its advantages are followed: i) the runtime of searching
for a node is constant which is independent of the number of
the nodes. ii) Because it takes key words separately to the
nodes of Tire tree for storage, it needs less space.

Then we introduce the idea of the function Subnodes().
The set of all lower neighbors of concept C is obtained by
computing the ranks of every attribute in concept-
matrix of concept . The set is denoted by .

Let’s examine how to get all lower neighbors of a given
concept using the following example.

For the formal context shown in Table 1, we get all lower
neighbors of concept 124, . Let is the rank of 124, .
So 2. It can be drawn form Figure 3 that 2 the rank of . According to
Theorem 1, a lower neighbor of 124,
is , 12, . Since the corresponding
column of is same as one of , the attribute in Theorem

1 can be considered as a set consisting of attributes which
columns are same in order to avoid redundant computation.
So , 24, is a lower neighbor
of 124, .

Then let 1 1 and 1. Since 1 12 , c , is NOT a lower
neighbor of 124, according to Theorem 2. And for the
same reason, , is NOT a lower neighbor
of 124, . Therefore, all lower neighbors of 124, are 12, and 24, . The pseudo codes of the function
Subnodes() are given below.
Function Subnodes(C)

Input: Concept ,
Output: the set neighbors of all lower neighbors of
Concept

1: ;
2: if | | 1 then return , ;
3: the concept-matrix of concept C;
4: compute the rank of the every attribute in ;
5: the rank of ;
6: if 1 then return , ;
7: do while 0
8: the set of the attributes which ranks equal to
9: do while

10: the set consisting of a attribute from and
these attributes from which corresponding
columns are same as column of in .

11:
12: 13:
14: if C X , Y , where ⊄

then , ;
15: loop
16: 1;
17: loop
18: return ;

4. Evaluation

We conducted a set of tests in which both variants of
CMCG have been compared to the algorithm Lattice. The
experiments were performed on a 1.7 GHz Intel processor
with 1.0 GB main memory, running Linux 2.65 system.
Both algorithms were implemented in C++.
The experiment used 2 groups of data where are randomly
generated by Galicia(http://www.iro.umontreal.ca/~galicia/).
Group One corresponding context tables were 50×20,
50×25, 50×30, … , 50×200 elements. Group Two
corresponding context tables were 50×20, 100×20, 150×20,
… , 3000×20 elements. The context fill ratio which is the
quotient of |R| and |O| |A| is 30%.

1-4244-1312-5/07/$25.00 © 2007 IEEE 5590

0 10000 20000 30000 40000 50000 60000 70000
Lattice Size

0

1000000

2000000

3000000

4000000

5000000

6000000
C

os
t T

im
e

(
m

s)

 CMCG
 Lattice

Figure 4. Running time of algorithms versus lattice size on

Group One

0 10000 20000 30000 40000 50000 60000 70000
Lattice Size

0

100000

200000

300000

400000

500000

600000

C
os

t T
im

e
(m

s)

 CMCG
 Lattice

Figure 5. Running time of functions which is to get all

lower/supper neighbors of a given concept versus lattice
size on Group One

0 10000 20000 30000 40000 50000
Lattice Size

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

C
os

t T
im

e
(m

s)

 CMCG
 Lattice

Figure 6. Running time of algorithms versus lattice size on

Group Two

From above several figures, It can be drawn that if the
number of attributes is constant, the cost time of CMCG
Algorithm is less with the increase of the number of objects.

0 10000 20000 30000 40000 50000
Lattice Size

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

C
os

t T
im

e
(

m
s)

 CMCG
 Lattice

Figure 7. Running time of functions which are to get all
lower/supper neighbors of a given concept versus lattice

size on Group Two

5. Conclusion

 The theory of concept lattice is an effective tool for
knowledge representation and knowledge discovery, and is
applied to many fields. This paper presents an algorithm of
generating concept lattice with Hasse based on concept-
matrix. By experiment the effectiveness of CMCG
Algorithm was proved contrasting to Lattice Algorithm.

6. References

[1]. an approach based on hierarchies of concepts. Wille,
Robert. [ed.] Rival Ivan. 1982. Ordered Srts. pp. 450-470.
[2]. Learning classification rules using lattices. Sahami,
Mehran. Berlin : s.n., 1995. Proceedings of the 8th
European Conference on Machine Learning (ECML-95). pp.
343-346.
[3]. Zaki, Mohammed J and Hsiao, Ching-Jui. CHARM:
an efficient algorithm for closed association rule mining.
1999.
[4]. Fast Concept Analysis. Linding, Christan. Aachen :
Shaker Verlag, 2000. Working with Conceptual Structures -
Contributions to ICCS 2000.
[5]. Xie, Zhipeng, et al. Concept lattice based composite
classifiers for high predictability. Experimental &
Theoretical Artificial Intelligence. 2002, Vol. 14, pp. 143-
156.
[6]. Goden, Robert, Missaoui, Rokia and Alaoui, Hassan.
Incremental concept formation algorithms based on Galois
(concept) lattices. Computational Intelligence. 2, 1995, Vol.
11, pp. 246-267.
[7]. Wille, Rudolf and Ganter, Bernhand. Formal
Concept Analysis: Mathematical Foundations. s.l. :
Springer, 1999.
[8]. Zhai, Y.H., Qu, K.Y. and Cao, Y.Y. An Algorithm of
Generating Concept Lattice based on Rank of Matrix.
Computer Development and Applications. 5, 2006, Vol. 19,
pp. 11-12.

1-4244-1312-5/07/$25.00 © 2007 IEEE 5591

