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Abstract—Association rule discovery is one of kernel tasks of
data mining. Concept lattice, induced from a binary relation
between objects and features, is a very useful formal analysis tool.
It represents the unification of concept intension and extension.
It reflects the association between objects and features, and the
relationship of generalization and specialization among concepts.
There is a one-to-one correspondence between concept intensions
and closed frequent itemsets. This paper presents an efficient
algorithm for mining association rules based concept lattice called
Arca (Association Rule based Concept lAttice). Arca algorithm
uses concept-matrix to build a part of concept lattice, in which the
intension of every concept be put into one-to-one correspondence
with a closed frequent itemset. Then all association rules are
discovered by 4 operators which are defined in this paper
performed on these concepts.

Index Terms—Concept lattice, rank of matrix, formal concept
analysis.

I. INTRODUCTION

Association rule mining from a transaction database has
been a very active research area since the publication of
the Apriori algorithm [1]. Several improvements to the basic
algorithm and many new approaches [2]–[10] have been
proposed during the last decade. With the development of
research, Association rule discovery is one of kernel tasks of
data mining.

Formal Concept Analysis (FCA) was developed by Pro.
Wille in 1982 [11]. Concept Lattice, the core data structure
in Formal Concept Analysis, has been widely in machine
learning, data mining and knowledge discovery, etc. Every
node of concept lattice is a formal concept consisting of extent
and intent. Concept lattice embodies the relations between
extension and intension. Here is a one-to-one correspondence
between concept intensions and closed frequent itemsets.

There are various algorithms [12]–[16] of association rule
mining using concept lattice. However, These algorithms need
to build a complete concept lattice. Based on CMCG algorithm
[17], this paper presents an algorithm Arca of association rule
mining using a part of concept lattice.

The paper is organized as follows. Section 2 recalls basic
definitions of association rule and concept lattice. Section 3
discusses Arca algorithm and four operator. Section 4 gives an
experimental evaluation on the time spent of Arca algorithm
and Apriori algorithm. Section 5 concludes the paper.

II. THE DEFINES OF ASSOCIATION RULE AND CONCEPT

LATTICE

Let I = {i1, i2, . . . , im} be a set of m items.Let (T ) =
{t1, t2, . . . , tn}, the task-relevant data, be a set of database
transactions where each transaction t is a set of items such that
t ⊆ I . Each transaction is associated with an identifier, called
TID. Each transaction t consists of a set of items I from I .
If |I| = k, then I is called a k − itemset. A transaction t is
said to contain I if and only if I ⊆ t. An association rule is
an implication of ten form I1 ⇒ I2, where I1, I2 ⊂ I and
I1 ∩ I2 = ∅. The rule I1 ⇒ I2 holds in the transaction set T
with support s, where s is the percentage of transactions in T
that contain I1 ∪ I2 (i.e., both I1 and I2). This is taken to be
the probability, P (I1∪I2). The rule I1 ⇒ I2 has confidence c
in the transaction set T if c is the percentage of transactions
in T containing I1 that also contain I2. This is taken to be
the conditional probability, P (I2|I1). That is,

support(I1 ⇒ I2) = P (I1 ∪ I2) (1)

confidence(I1 ⇒ I2) = P (I2|I1) (2)

Given the user defined minimum support minsupp and mini-
mum confidence minconf thresholds. If the support of I ⊆ t
itemset I be greater or equal to minsupp, I is called a
frequentitemset.

Example 2.1: For T = {A,B,C,D,E},I =
{A,B,C,D,E}, Table I represents a transaction database.

Definition 2.1: A data mining context is a triple:D =
(T ,I ,R), where I and T are two sets, and R is a relation
between I and T . T = {t1, t2, . . . , tn}, each ti(i ≤ n) is
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TABLE I
A TRANSACTION DATABASE

TID Iterms

1 A CD

2 BC E

3 ABC E

4 B E

5 ABC E

TABLE II
A TRANSACTION DATABASE

A B C D E

1 1 0 1 1 0

2 0 1 1 0 1

3 1 1 1 0 1

4 0 1 0 0 1

5 1 1 1 0 1

Fig. 1. A context-matrix of the data mining context showed in TableII

called an object. I = {i1, i2, . . . , im} , each ij(j ≤ m) is
called an attribute.
In a data mining context D = (T ,I ,R), if (t, i) ∈ R, we
say that the attribute i is an attribute of the object t, or that
t verifies i. In this paper, (t, i) ∈ R is denoted by 1, and
(t, i) /∈ (R) is denoted by 0. Thus, a data mining context can
be represented by a matrix only with 0 and 1. We say that the
matrix is the context-matrix of D .

Example 2.2: Table II represents a data mining context
corresponding with the transaction database showed in Table
I.

Example 2.3: Fig 1 a context-matrix of the data mining
context showed in Table II.

Definition 2.2: Let D = (T ,I ,R) be a data mining
context. We define a function f(T ) that produces the set of
their common attributes for every set T ⊆ T of objects to
know which attributes from I are common to these entire
objects: f(T ) = {i ∈ I |∀t ∈ T , (t, i) ∈ R}

Dually, we define Y for subset of attributes I ⊂ I , g(I)
denotes the set consisting of those objects in T that have all
the attributes from I : g(I) = {t ∈ T |∀i ∈ I , (t, i) ∈ R}.
Let h(I) = f(g(I)).

These two functions are used to determine a formal concept.
Definition 2.3: Let D = (T ,I ,R) be a data mining

context. A pair (T, I) is called a formal concept of D , for
short, a concept, if and only if T ⊆ T , I ⊆ I , f(T ) = I
and g(I) = T . T is called extent, I is called intent.

Definition 2.4: Let D = (T ,I ,R) be a data mining

Fig. 2. A Concept lattice for the context of TableII

context. The set of all concepts of D is denoted by B(D),
C1 = (T1, I1) and C2 = (T2, I2) are two concepts in
B(D). An partial ordering relation (¡) is defined on B(D) by:
C1 < C2 ⇔ T1 ⊂ T2 or C1 < C2 ⇔ I1 ⊃ I2

We say that C2 is called a superconcept of C1 and C1

is called a subconcept of C2. B(D) and the partial ordering
relation (¡) form a compete lattice called the concept lattice
of D and denoted by L(D).

Example 2.4: Fig 2 a concept lattice for the context of Table
II.

Definition 2.5: Let D = (T ,I ,R) be a data mining
context. C1 and C2 are two concepts in B(D). If C1 < C2

and there is no concept C3 in B(D) fulfilling C1 < C3 < C2,
C1 is called a lower neighbor of C2 , denoted by C1 ≺ C2,
and C2 is called a upper neighbors of C1.

The set of all lower neighbors of a given concept is a subset
of the set consisting of all subconcepts of it.

Definition 2.6: Let I ⊆ I be a set of items from D =
(T ,I ,R). The support count of the itemset I in D is:

support(I) =
|g(I)|
|T | (3)

Definition 2.7: Let I ⊆ I be a set of items from D =
(T ,I ,R). If support(I)minsupp, I is called a frequent
itemset.

Definition 2.8: Let D = (T ,I ,R) be a data mining
context. For given a item i ∈ I , if the count of 1s in the
corresponding column of the item i in the concept-matrix of
D is n we say that the rank of item i in concept-matrix of D
is n, denoted by r(i) = n. If m = max{r(i)|i ∈ I }, we say
that the rank of the data mining contgext D is m.

Definition 2.9: Let D = (T ,I ,R) be a data mining
context. The concept-matrix of C = (T, I) is the matrix
consisting of these rows what are the corresponding rows of
the each element t in set T in context-matrix of D .

Example 2.5: Fig 3 represents the concept-matrix of con-
cept (135, AC).
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Fig. 3. The concept-matrix of concept (135, AC)

Definition 2.10: Let D = (T ,I ,R) be a data mining
context. C = (T, I) is a concept in B(D). If the count
of 1s in the corresponding column of the item i in the
concept-matrix of C is n, we say that the rank of item i in
concept-matrix of concept C is n, denoted by RC(i) = n.
If m = max{RC(i)|i ∈ I , i /∈ I}, we say that the rank of
concept C is m.

Property 2.1: The count of objects of subconcept of con-
cept C is equal or lesser than m.

Definition 2.11: Let D = (T ,I ,R) be a data mining con-
text. C = (T, I) is a concept in B(D).Given subset I1 ⊆ I ,
gC(I1) denotes the set consisting of those transactions in T
that have all the itemsets from I : gC(I1) = {t ∈ T |∀i ∈
I1, (t, i) ∈ R}

Definition 2.12: Let D = (T ,I ,R) be a data mining
context. C = (T, I) is a concept in B(D).If |T | ≥ |T | ×
minsupp. C is called a frequent concept.

Property 2.2: If C = (T, I) is a frequent concept, I is a
frequent itemset.

Proof: |T | ≥ |T | ×minsupp, so |T |
|T | ≥ minsupp. And

T = g(I), so |g(I)|
|T | ≥ minsupp. Then I is a frequent itemset.

Theorem 2.1: Let D = (T ,I ,R) be a data mining
context. C = (T, I) is a concept in B(D). The rank of
concept C is m. For ∀i ∈ {i|RC(i) = m, i ∈ I },
C1 = (gC(i), f(gC(i))). Then C1 is a lower neighbor of C.

Proof: By Definition 2.10 And Definition 2.11, we have
|gC(i)| = m. Suppose there exist C2 = (T2, I2), where C1 ≺
C2. We can obtain m = |gC(i)| < |T2| < |T |. By Property
2.1, we have |T2| ≤ m. This result contradicts with m < |T2|.
Then C1 is a lower neighbor of C.

Theorem 2.2: Let D = (T ,I ,R) be a data mining
context. C = (T, I) is a concept in B(D). The rank of concept
C is m. C1 = (gC(i1), f(gC(i1))) is a subconcept of C,
where i1 ∈ I and RC(i1) = m1 > 0. For ∀C2 ∈ {C2 =
(T2, I2)|C2 < C,m1 < |T2|}, there NOT exist gC(i1) ⊂ T2.
Then C1 is a lower neighbor of C.

Proof: Suppose there exist C3 = (T3, I3), where C1 <
C3 < C, We have m1 = |g(i1) ∩ T | < |T3| < |T |, it implies
that C3 ∈ {C2 = (T2, I2)|C2 < C,m1 < |T2|}, and NOT
gC(i1) ⊂ I3. On the other hand C1 < C3 < C implies that
gC(i1) ⊂ I3. This result contradicts with NOT gC(i1) ⊂ I3.
Then C1 is a lower neighbor of C.

Definition 2.13: An association rule is an implication be-
tween itemsets of the form r : I1 → I2, where I1, I2 ⊂ I
and I1 ∩ I2 = ∅. I1 is called the antecedent of r and I2 is
called the consequent of r. Below, we define the support and

Fig. 4. A concept lattice while minsupp = 0.4

TABLE III
BASIC ASSOCIATION RULES FROM FIG 4 WITH minconf = 0.5

basic association rule minimum support

∅ → BE 4/5

∅ → C 4/5

BE → C 3/4

C → BE 3/4

C → A 3/4

BCE → A 2/3

AC → BE 2/3

confidence of an association r:

support(r) =
|g(I1 ∪ I2)|
|T | (4)

confidence(r) =
support(I1 ∪ I2)

support(I1)
=
|g(I1 ∪ I2)|
|g(I1)| (5)

Mining association rules is to find all rules r, where
support(r) ≥ minsupp and confidendce(r) ≥ minconf .

III. ARCA ALGORITHM

When a concept lattice is built, each concept C = (T, I)
holds |T | ≥ minsupp.

Example 3.1: Fig 4 represents a concept lattice while
minsupp = 0.4.

Definition 3.1: Let D = (T ,I ,R) be a data mining
context. C1 = (T1, I1) and C2 = (T2, I2) are two concepts
in B(D) and C1 ≺ C2. If |T1|

|T2| ≥ minconf , the rule
r : I2 ⇒ I1 − I2 is called a basic association rules. The
minimum support of r is defined as |T1|

|T2| .
Basic association rules can be mined from concept lattice.
Example 3.2: Table III represents basic association rules

from Fig 4 with minconf = 0.5.
Definition 3.2: Let r1 ≡ I1 → I2, r2 ≡ I3 → I4, the mini-

mum supports of r1 and r2 are conf1 and conf2, respectively.
If I1 ∪ I2 = I3, The operator ’+’ can be implemented on r1

and r2. r1 + r2 ≡ I1 → I4. The minimum support of I1 → I4

is defined as conf12 = conf1 × conf2. Let r3 ≡ I4 → I5

and its minimum supports is conf3. If I1 ∪ I2 = I3 and
I3 ∪ I4 = I5, the operator ’+’ can be implemented on r1,
r2 and r3. r1 + r2 + r3 ≡ I1 → I6 and its minimum support

978-1-4244-2108-4/08/$25.00  © 2008 IEEE



TABLE IV
THE RESULT OF PERFORMING ’+’ AND ’⊕’ ON BASIC ASSOCIATION RULES

IN TABLE III.

Basic rules The result of ’+’ The result of ’⊕’

∅ → C ∅ → BCE

BE → A BE → AC

∅ → A ∅ → ABCE

∅ → BE ∅ → BE

C → A C → ABE

C → A C → ABCE

∅ → A ∅ → AC

C → BE C → ABE

∅ → BE ∅ → ABCE

is conf123 = conf1 × conf2 × conf3. The operator ’+’ can
be defined among n rules by same way.

Definition 3.3: Let r1 ≡ I1 → I2, r2 ≡ I3 → I4, the
minimum supports of r1 and r2 are conf1 and conf2, respec-
tively. If I1 ∪ I2 = I3, The operator ’⊕’ can be implemented
on r1 and r2. r1 ⊕ r2 ≡ I1 → I2 ∪ I4. The minimum support
of I1 → I2 ∪ I4 is defined as conf12 = conf1 × conf2.
Let r3 ≡ I4 → I5 and its minimum supports is conf3. If
I1 ∪ I2 = I3 and I3 ∪ I4 = I5, the operator ’⊕’ can be
implemented on r1, r2 and r3. r1⊕r2⊕r3 ≡ I1 → I2∪I4∪I6

and its minimum support is conf123 = conf1×conf2×conf3.
The operator ’⊕’ can be defined among n rules by same way.

Let’s examine how to perform ’+’ and ’⊕’ on basic associ-
ation rules in Table III Using the following example.

Example 3.3: Since BE, the union of the antecedent and
consequent of rule , be not equal to the antecedent of rule

, the operators ’+’ and ’⊕’ cannot be implemented on rule
and rule . The antecedent of rule be equal to BE. Therefore,
the operators ’+’ and ’⊕’ cannot be implemented on rule
and rule .

+ ≡ ∅ → C (6)

⊕ ≡ ∅ → BCE (7)

Every basic association rule after rule is check whether the
operators ’+’ and ’⊕’ can be implemented on rule and itself.

and not. yes. Therefore, we can obtain:

+ ≡ BE → A (8)

+ + ≡ ∅ → A (9)

⊕ ≡ BE → AC (10)

⊕ ⊕ ≡ ∅ → ABCE (11)

Table IV represents the result of performing ’+’ and ’⊕’ on
basic association rules in Table III.

Definition 3.4: Let r1 ≡ I1 → I2. The result of performing
operator right move is a set of association rules {I ′1 → I2 ∪
I ′′1 |I ′1 ∩ I ′′1 = ∅, I ′1 ∪ I ′′1 = I1, I

′
1 �=, I ′′1 �= ∅, g(I1) ≤ g(I ′1)}

Definition 3.5: Let r1 ≡ I1 → I2. The result of performing
operator decompose is a set of association rule {I1 → I ′2|I ′2 �=
∅, I ′2 ⊂ I2}

All association rules which confidence be less than 1 are
mining out by performing four operators on basic association
rules. The pseudo codes are given by Algorithm 1.

Algorithm 1 GenBasicRules(D ,minsupp,minconf )
Require: Input: minimum support minsupp, minimum con-

fidence minconf and data mining context D = (T ,I ,R)
Ensure: Output: a set of basic association rules BasicRules

Initialize a queue Queue
BasicRules← ∅
Queue.EnQueue((T , ∅))
while Queue �= ∅ do

C = Queue.DeQueue
for all C1 such that C1 ∈ SUBNODES ∗ (C) do

if (|Extent(C1)|/|Extent(C)|) ≥ minconf then
if C1 /∈ Queue then

Queue.EnQueue(C1)
end if
generate a rule r : Intent(C)→ Intent(C1)
BasicRules← BasicRules ∪ r

end if
end for

end while
return BasicRules

Algorithm 2 SUBNODES*(C,D ,minsupp))
Require: Input: given a concept C = (T, I), minimum

support minsupp, and data mining context D = (T ,I ,R)
Ensure: Output:a set subnodes of concepts which extent’s

count be greater or equal to minsupp
subnodes← ∅
M ← the concept matrix of concept C
compute the rank of every attribute in M
m← the rank of concept C
while m ≥ minsupp do

S ←the set of attributes which ranks equal to m
while S �= ∅ do

I1 ← the set consisting of a attribute a from S and
these attributes from S which corresponding columns
are same as column of a in M
S ← S − I1

T1 ← gC(I1)
I1 ← I ∪ I1

if ∀C2 = (T2, I2) ∈ subnodes, such that NOT T1 ⊂
T ∩ T2 then

subnodes← subnodes ∪ (T1, I1)
end if

end while
m← m− 1

end while
return subnodes

Algorithm 1 is to generate basic association rules by build
a concept lattice called function SUBNODES* The pseudo
codes of this function are given by Algorithm 2.
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Fig. 5. Running time of algorithms with minconf = 0.01

IV. EVALUATION

In order to evaluate, we implement Algorithm Arca and
Algorithm Aprior by Visual C++ and STL. The data set, gen-
erated randomly by IBM dataset generator, have 1000 items
and 10000 transactions. The result shows that the performance
of Arca is as four times higher as Aprior on average. Fig 5
represents Running time of algorithms versus lattice size with
minconf = 0.01.

V. CONCLUSION

Now, there are many algorithms of mining association
rules. There is a one-to-one correspondence between concept
intensions and closed frequent itemsets. Concept lattice is a
good tool for mining association rules.
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