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Abstract: 
Bankruptcy prediction is one of the most important issues in financial decision-making. 
Constructing effective corporate bankruptcy prediction models in time is essential to make 
companies or banks prevent from bankruptcy. This study proposes a novel bankruptcy prediction 
model based on an adaptive fuzzy k-nearest neighbor (FKNN) method, where the neighborhood 
size k and the fuzzy strength parameter m are adaptively specified by the continuous particle 
swarm optimization (PSO) approach. In addition to performing the parameter optimization for 
FKNN, PSO is also utilized to choose the most discriminative subset of features for prediction. 
Adaptive control parameters including time-varying acceleration coefficients (TVAC) and 
time-varying inertia weight (TVIW) are employed to efficiently control the local and global search 
ability of PSO algorithm. Moreover, both the continuous and binary PSO are implemented in 
parallel on a multi-core platform. The proposed bankruptcy prediction model, named 
PTVPSO-FKNN, is compared with five other state-of-the-art classifiers on two real-life cases. The 
obtained results clearly confirm the superiority of the proposed model in terms of classification 
accuracy, Type I error, Type II error and area under the receiver operating characteristic curve 
(AUC) criterion. The proposed model also demonstrates its ability to identify the most 
discriminative financial ratios. Additionally, the proposed model has reduced a large amount of 
computational time owing to its parallel implementation. Promisingly, PTVPSO-FKNN might 
serve as a new candidate of powerful early warning systems for bankruptcy prediction with 
excellent performance. 
 
Keywords: Fuzzy k-nearest neighbor; Parallel computing; Particle swarm optimization; Feature 
selection; Bankruptcy prediction 

1. Introduction  
Accurately identifying the potentially financial failure of companies remains a goal of many 

stakeholders involved. Because there is no underlying economic theory of bankruptcy, searching 
for more accurate bankruptcy prediction models remains the goal in the field of the bankruptcy 
prediction. As a matter of fact, bankruptcy prediction can be formulated as the problem of solving 
classification task. A fair amount of classification models has been developed for bankruptcy 
prediction. These models have progressed from statistical methods to the artificial intelligence (AI) 
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approaches. A number of statistical methods such as the simple univariate analysis [1], 
multivariate discriminant analysis technique [2], logistic regression approach [3] and factor 
analysis technique [4] have been typically used for financial applications including bankruptcy 
prediction. Recent studies in the AI approach, such as artificial neural networks (ANN) 
[5][6][7][8][9][10][11], rough set theory [12][13][14], support vector machines (SVM) 
[15][16][17], k-nearest neighbor method (KNN) [18][19][20], Bayesian network models [21][22] 
and other different methods such as hybrid methods and ensemble methods [23][24][25][26] have 
also been successfully applied to bankruptcy prediction (see [25][26] for detail). Among these 
techniques, ANN has become one of the most popular techniques for the prediction of corporate 
bankruptcy due to its high prediction accuracy. However, a major disadvantage of ANN lies in 
their knowledge representation. The black box nature of ANN makes it difficult for humans to 
understand how the networks predict the bankruptcy.   

Compared with ANN, KNN is simple, easily interpretable and can achieve acceptable accuracy 
rate. Albeit these advantages, the standard KNN methods place equal weights on all the selected 
neighbors regardless of their distances from the query point. An improvement over the standard 
KNN classifier is the Fuzzy k-nearest neighbor classifier (FKNN) [27], which uses concepts from 
fuzzy logic to assign degree of membership to different classes while considering the distance of 
its k-nearest neighbors. It means that all the instances are assigned a membership value in each 
class rather than binary decision of ‘bankruptcy’ or ‘non-bankruptcy’. Points closer to the query 
point contributes larger value to be assigned to the membership function of their corresponding 
class in comparison to far away neighbors. Class with the highest membership function value is 
taken as the winner. The FKNN method has been frequently used for the classification of 
biological data [28][29][30], image data [31][32] and so on. Nevertheless, only few works have 
paid attention to using FKNN to dealing with the financial problems. Bian et al. [33] used FKNN 
as a reference classifier in their experiments in order to show the superiority of the proposed 
Fuzzy-rough KNN method, which incorporated the rough set theory into FKNN to further 
improve the accuracy of bankruptcy prediction. However, they did not comprehensively 
investigate the neighborhood size k and the fuzzy strength parameter m, which play a significant 
role in improving the prediction result. This work will explore the full potential of FKNN by 
automatically determining k and m to exploit the maximum classification accuracy for bankruptcy 
prediction. 
   Besides choosing a good learning algorithm, feature selection is also an important issue in 
building the bankruptcy prediction models [25][34][35][36][37], which refers to choosing subset 
of attributes from the set of original attributes. The purpose of the feature selection is to identify 
the significant features and build a good learning model. The benefits of feature selection are 
threefold: improving the prediction performance of the predictors, providing faster and more 
cost-effective predictors, and providing a better understanding of the underlying process that 
generated the data [38]. In bankruptcy prediction, genetic algorithms (GA) is usually used to select 
a subset of input features [39][40][41], to find appropriate hyper-parameter values of a predictor 
(for example, the kernel width and the regularization constant in the case of SVM) [35][42][43], 
or to determine predictor parameters (for example, Multilayer perceptron weights) [44][45]. 
Compared with GA, PSO algorithm [46] has no crossover and mutation operators, it is simple and 
computationally inexpensive both in memory and runtime. Additionally, every particle adjusts 
their velocity and position according to the local best and global best. So that all the particles have 



a powerful search capability, which can help the swarm find the optimal solution. As for GA, after 
finding a locally optimum, it  is  difficult  for it  to find out a much better one even with a random 
search strategy in terms of mutation operator especially within a reasonable searching time. In this 
work, we will focus on exploring the PSO-based parameter optimization and feature selection 
approach. The continuous PSO algorithm will be employed to evolve an adaptive FKNN, where 
the neighborhood size k and the fuzzy strength parameter m are adaptively specified. On the other 
hand, the binary PSO will be used as a feature selection vehicle to identify the most informative 
features as well.  
  When dealing with the practical problems, the evolutionary-based methods such as the PSO and 
GA will cost a lot of computational time. There is an urgent need to improve the performance 
using high-performance computing techniques. For this reason, it is one of the major purposes of 
this paper to use a parallel environment to speed up the search and optimization process. Both the 
continuous and binary PSO are implemented on a multi-core platform using OpenMP (Open 
Multi-Processing) which is a portable, scalable model that gives programmers a simple and 
flexible interface for developing parallel applications for platforms [47]. The efficiency and 
effectiveness of the proposed bankruptcy prediction model is validated by comparing with other 
five state-of-the-art classification methods on two real-life cases. The experimental results 
demonstrate that the proposed model can not only obtain the most appropriate parameters but also 
show high discriminating power as a feature selection tool. Further comparison is also made 
between the parallel model and serial one. Based on the experiments conducted, it is inferred that 
the parallel model PTVPSO-FKNN can significantly reduce the computational time.  

The rest of the paper is organized as follows. In Section 2, we give a brief description of FKNN 
method and PSO algorithm. Section 3 proposes our model, the simultaneous optimization of 
relevant parameters and feature subset by the PSO approach in a parallel environment. In the next 
section, the detailed experimental design is presented, and Section 5 describes all the empirical 
results and discussion. Finally, Conclusions and future work are summarized in Section 6. 

2. Background Materials 

2.1 Fuzzy k-Nearest Neighbor Algorithm 
The k-nearest neighbor algorithm (KNN) is one of the oldest and simplest non-parametric 

pattern classification methods. In the KNN algorithm a class is assigned according to the most 
common class amongst its k-nearest neighbors. In 1985, Keller proposed a fuzzy version of KNN 
by incorporating the fuzzy set theory into the KNN algorithm, and named it as “fuzzy KNN 
classifier algorithm” (FKNN) [27]. According to his approach, rather than individual classes as in 
KNN, the fuzzy memberships of samples are assigned to different categories according to the 
following formulation: 
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where i=1,2,…C, and j=1,2,…,k, with C number of classes and k number of nearest neighbors. 
The fuzzy strength parameter m is used to determine how heavily the distance is weighted when 
calculating each neighbor’s contribution to the membership value, and its value is usually chosen 
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as (1, )mÎ ¥ . ||x - xj|| is the distance between x and its jth nearest neighbor xj. Various metrics can 
be chosen for ||x - xj||, such as Euclidean distance, Hamming distance, and Mahalanobis distance, 
among other distances. In this study, the Euclidean metric is used. uij is the membership degree of 
the pattern xj from the training set to the class i, among the k nearest neighbors of x. There are two 
ways [27] to define uij, one way is the crisp membership, i.e., each training pattern has complete 
membership in their known class and non-memberships in all other classes. The other way is the 
constrained fuzzy membership, i.e., the k nearest neighbors of each training pattern (say xk) are 
found, and the membership of xk in each class is assigned as: 
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The value nj is the number of neighbors found which belong to the jth class. Note that, the 
memberships calculated by Eq. (2) should satisfy the following equations:  
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In our experiments, we have found that the second way leads to better classification accuracy. 
After calculating all the memberships for a query sample, it is assigned to the class with which it 
has the highest membership value, i.e., 
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The pseudo-code of the FKNN algorithm is given below: 
 

 Input: (a) The training set X with the labeled patterns { | 1,2, , }ix i n= K . 
       (b)  The  test  pattern  y. 
Output: (a) Class label of y. 

        (b) Confidence for each class label.   
ALGORITHM: 
For i = 1, 2, … , to n 

     Compute the distance from xi to y using the Euclidean metric. 
     If i ≤ k 
          Include  xi  in  the  set  of  k nearest neighbors. 
     Else if (xi is closer to y than any previous nearest neighbors) 
           Delete  the  farthest  of  the  k nearest neighbors. 

Include xi in the set of k nearest neighbors. 
End  if   

End for 
For c = 1 to C  
Compute ui(x) using (1). 
End for  
Crisp class label of y is assigned to the class with which it has the highest membership value 



using (6).  
 

2.2 Time Variant Particle Swarm Optimization (TVPSO)  
PSO is inspired by the social behavior of organisms such as bird flocking and fish schooling, 

which was first developed by Kennedy and Eberhart [46][48]. In PSO each individual is treated as 
a particle in d-dimensional space, and each particle has a position and velocity. The position vector 
of the ith particle is represented as Xi = (xi,1,xi,2,…,xi,d), and its according velocity is represented as 
Vi = (vi,1,vi,2,…,vi,d). The velocity and position are updated as follows: 

1
, , 1 1 , , 2 2 , ,( ) ( )n n n n n n

i j i j i j i j g j i jv w v c r p x c r p x+ = ´ + ´ - + ´ -                                    (7)  

1 1
, , , , 1,2, ,n n n

i j i j i jx x v j d+ += + = L                                                     (8)  

where Vector Pi =  (pi,1, pi,2,…, pi,d) represents the best previous position of the ith particle that 
gives the best fitness value, which is known as the personal best position (pbest). Vector Pg = (pg,1, 
pg,2, …, pg,d) is the best particle among all the particles in the population, which is known as the 
global best position (gbest). r1 and r2 are random numbers, generated uniformly in the range [0, 1]. 
The velocity vi,j is  restricted  to  the  range   [-vmax, vmax], in order to prevent the particles from 
flying out of the solution space. Generally, maxv  is suggested to set to be 10-20% of the dynamic 
range of the variable in each dimension [49].  

Inertia weight w, introduced by Shi and Eberhart, which is used to balance the global 
exploration and local exploitation [50]. A large inertia weight facilitates the global search, while a 
small inertia weight facilitates the local search. In order to reduce the weight over the iterations 
allowing the algorithm to exploit some specific areas, the inertia weight w is updated according to 
the following equation:  
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where maxw , minw  are the predefined maximum and minimum values of the inertia weight w, t is 
the current iteration of the algorithm and maxt  is the maximum number of iterations. Usually the 
value of w is varied between 0.9 and 0.4. Eq. (9) is also known as time-varying inertia weight 
(TVIW), which will be incorporated into the TVPSO. It has been shown to significantly improve 
the performance of PSO [51], since it makes PSO have more global search ability at the beginning 
of the run and have more local search ability near the end of the run. 1c  and 2c  are acceleration 
coefficients, which define the magnitude of the influences on the particles velocity in the 
directions of the personal and the global optima, respectively. To better balance the search space 
between the global exploration and local exploitation, time-varying acceleration coefficients 
(TVAC) have been introduced in [52]. This concept will be adopted in this study to ensure the 
better search for the solutions. The core idea of TVAC is that 1c  decreases from its initial value 

of 1ic  to 1 fc , while 2c  increases from 2ic  to 2 fc  using the following equations as in [52]. 

TVAC can be mathematically represented as follows: 
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where 1 fc , 1ic , 2 fc  and 2ic  are constants, t  is the current iteration of the algorithm and maxt  is 

the maximum number of iterations.  
  For the binary PSO, the discrete PSO version introduced by Kennedy and Eberhart [53] was 
adopted in this study. The binary PSO is searching in a discrete space (i.e.,  searching in a space 
where ‘0’ presents the feature is selected ‘1’ denotes the feature is discarded). Where a particle 
moves in a state space restricted to zero and one on each dimension, in terms of the changes in 
probabilities that a bit will be in one state or the other. If the velocity is high it is more likely to 
choose ‘1’, and lower values favor choosing ‘0’. A sigmoid function is applied to transform the 
velocity from continuous space to probability space: 
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The velocity update Eq. (7) keeps unchanged except that , ,,i j i jx p  and ,g jp Î {0,1} , and in order 

to ensure that bit can transfer between ‘1’ and ‘0’ with a positive probability, maxv  was introduced 

to limit ,i jv . The new particle position is updated using the following rule: 
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where ,( )i jsig v  is calculated according to Eq. (12), rnd  is a uniform random number in the 

range [0, 1]. 
  As described above, TVPSO is adaptive in nature by allowing its inertia weight and 
acceleration coefficients to vary with iterations during its search in the continuous and discrete 
space. This character helps the algorithm explore the search space to a greater extent. 

3. Proposed PTVPSO-FKNN Prediction Model 
In this section, we describe the proposed PTVPSO-FKNN model for bankruptcy prediction. As 

mentioned in the Introduction, the aim of this model is to optimize the FKNN classifier by 
automatically: 1) determining the number of nearest neighbors k and the fuzzy strength 
parameter m and 2) identifying the subset of best discriminative features. In order to achieve this 
goal, the continuous and binary PSO are combined together to dynamically conduct parameter 
optimization and feature selection simultaneously. The obtained appropriate feature subset is 
served as the input into the optimized FKNN model for classification. PTVPSO-FKNN takes into 
consideration two fitness values for parameter optimization and feature selection. One is the 
AUC value and the other is the number of selected features by TVPSO. Here, we first describe 
the model based on the serial PSO algorithm, termed TVPSO-FKNN, and then implement it in 
parallel. 

3.1 TVPSO-FKNN Model based on the Serial PSO Algorithm 
The flowchart of the TVPSO-FKNN model for bankruptcy prediction was constructed through the 



following main steps as shown in Fig. 1. 
Step 1: Encode the particle with n+2 dimensions. The first two dimensions are k and m which are 

continuous values. The remaining n dimensions is Boolean features mask, which is 
represented by discrete value, ‘1’ indicates the feature is selected, and ‘0’ represents the 
feature is discarded.  

Step 2: Initialize the individuals of the population with random numbers. Meanwhile, specify the 
PSO parameters including the lower and upper bounds of the velocity, the size of 
particles, the number of iterations, etc.   

Step 3: Train the FKNN model with the selected features.  
Step 4: It  is  well  known  that  higher  the  AUC  value  the  better  the  classifier  is  said  to  be.  The  

particle with high AUC value and the small number of selected features can produce a 
high fitness value. Hence, we took both of them into consideration in designing the 
objective function, the fitness value was calculated according to the following objective 
function: 
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where variable AUC in the first sub-objective function f1 represents the area under the 
ROC curve achieved by the FKNN classifier via K-fold cross-validation (CV), here K=5. 
Note that here the 5-fold CV is used to determine the optimal parameters (including k and 
m) which is different from the outer loop of 10-fold CV, which is used to do the 
performance estimation. In the second sub-objective function f2, fti is the value of feature 
mask (‘1’ represents that feature is selected and ‘0’ indicates that feature is discarded), n is 
the total number of features. The weighted summation of the two sub-objective functions is 
selected as the final objective function. In the function f, α is the weight for FKNN 
classification accuracy, β indicates the weight for the selected features. The weight can be 
adjusted to a proper value depends on the importance of the sub-objective function. 
Because the classification performance more depend on the classification accuracy, hence 
the α value is set as much bigger than that of β. According to our preliminary experiments, 
the value of α and β were taken as 0.85 and 0.15 respectively. After the fitness value was 
obtained, the global optimal fitness was saved as gfit, personal optimal fitness as pfit, 
global optimal particle as gbest and personal optimal particle as pbest. 

Step 5: Increase the number of iteration. 
Step 6: Increase the number of population. Update the position and velocity of k, m using Eqs.(7-8) 

and the features using Eq.(7), Eqs.(12-13) in each particle.  
Step 7: Train the FKNN classifier with the feature vector obtained in Step 6 and calculate the 

fitness value of each particle according to Eq. (14). Notice that PSO is used for 
optimization tasks where the neighborhood size k to be optimized is integer number. 
Hence, an extra step is taken to round the encoded value k to the nearest integer number 
before the particle is evaluated. 

Step 8: Update the personal optimal fitness (pfit) and personal optimal position (pbest) by 



comparing the current fitness value with the pfit stored in the memory. If the current 
fitness is dominated by the pfit stored in the memory, then keep the pfit and pbest in the 
memory; otherwise, replace the pfit and pbest in the memory with the current fitness 
value and particle position. 

Step 9: If the size of the population is reached, then go to Step 10. Otherwise, go to Step 6. 
Step 10: Update the global optimal fitness (gfit) and global optimal particle (gbest) by comparing 

the gfit with the optimal pfit from the whole population, If the current optimal pfit is 
dominated by the gfit stored in the memory, then keep the gfit and gbest in the memory; 
otherwise, replace the gfit and gbest in the memory with the current optimal pfit and the 
optimal pbest from the whole population.      

Step 11: If the stopping criteria are satisfied, then go to Step 12. Otherwise, go to Step 5. The 
termination criteria are that the iteration number reaches the maximum number of 
iterations or the value of gfit does not improve after 100 consecutive iterations. 

Step 12: Get the optimal (k, m) and feature subset from the best particle (gbest). 
 

<Insert Fig.1 here>   
 

3.2 Parallel Implementation of the TVPSO-FKNN (PTVPSO-FKNN) 
When dealing with the practical problems, the evolutionary-based methods such as PSO and 

GA will cost a lot of computational time. There is an urgent need to improve the performance 
using high-performance computing techniques. Consequently, we attempt to implement 
TVPSO-FKNN in parallel on multi-core processor by using OpenMP to speed up the search and 
optimization process. 

The architecture of the multi-core platform is divided into three lays as shown in Fig. 2: 1) 
TVPSO-FKNN: It consists of a number of particles, which can supply computing requirements. 
The parallel algorithm controls the iterations of particles and each particle is calculated separately. 
2) OpenMP: This component guarantees to implement parallel synchronization and establish the 
communications with operating system (OS). The main part of OpenMP is scheduler, which 
provides the system with job scheduling and allocation. 3) Multi-core processor: The job is 
dispatched by OpenMP via OS. 

 
<Insert Fig.2 here> 

 
 
The pseudo-code of the parallel PTVPSO-FKNN is as follows: 
 
Initialize system parameters. 
Train FKNN model. 
Calculate fitness. 
While (cni < mni) /*current number of iteration (cni), maximum number of iteration (mni).*/ 
   For  each particle  
     Update position. 
  Update velocity. 



  Train FKNN model. 
  Calculate fitness. 
     Calculate  pfit .     /* personal optimal fitness (pfit)*/ 
     Calculate  pbest .   /* personal optimal position (pbest)*/ 
    End  for  
    Calculate gfit.        /*global optimal fitness (gfit)*/ 
    Calculate gbest.     /*global optimal particle (gbest)*/ 
    cni = cni + 1. 
End while 

 
 

4 Experimental Design 

4.1 Data Description 
The first financial data used for this study is the Wieslaw [54] dataset which contains 30 

financial ratios and 240 cases in total (112 from bankrupt Polish companies and 128 from 
non-bankrupt ones between 1997 and 2001). All the observations cover the period spanning 2 to 5 
years before bankruptcy toke place. It should be noted that the size of the dataset is not that large 
compared to the majority of bankruptcy prediction studies. However, according to [55], the dataset 
is reliable since increasing the dataset length does not lead to the accuracy increase. The 
description of the 30 financial ratios is shown in Table 1. Fig. 3 illustrates the distribution of the 
two  classes  of  240  samples  in  the  subspace  formed  by  the  two  best  features  according  to  the  
principal component analysis algorithm [56]. As shown in this figure, there is apparently strong 
overlap between the bankrupt companies and non-bankrupt ones. 

 
<Insert Fig.3 here> 
<Insert Table 1 here> 

 
The second dataset is the Australian credit dataset, is available from the UCI Repository of 

Machine Learning Databases. The Australian credit data consists of 307 instances of creditworthy 
applicants and 383 instances where credit is not creditworthy. Each instance contains 6 nominal, 8 
numeric attributes, and 1 class attribute (accepted or rejected). This dataset is interesting because 
there is a good mixture of attributes: continuous, nominal with small numbers of values, and 
nominal  with  larger  numbers  of  values.  There  are  also  a  few  missing  values.  To  protect  the  
confidentiality of data, the attributes names and values have been changed to meaningless 
symbolic data.  

Normalization is employed to avoid feature values in greater numerical ranges dominating 
those in smaller numerical ranges, as well as to avoid the numerical difficulties during the 
calculation [57]. Generally, the data could be normalized by scaling them into the interval of [0, 1] 
or [-1, 1], here we chose the range of [-1, 1] according to the Eq. (15), where x is the original value, 
x¢  is the scaled value, amax is the maximum value of feature a, and amin  is the minimum value 
of feature a. 

( )*2 1a

a a

x - minx
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¢ = -                                                     (15)  



In order to gain an unbiased estimate of the generalization accuracy, the k-fold CV presented by 
Salzberg [58] was used to evaluate the classification accuracy. This study set k as 10, i.e., the data 
was divided into ten subsets. Each time, one of the 10 subsets is used as the test set and the other 9 
subsets  are  put  together  to  form  a  training  set.  Then  the  average  error  across  all  10  trials  is  
computed. The advantage of this method is that all of the test sets are independent and the 
reliability of the results could be improved. And we attempted to design our experiment using two 
loops. The inner loop is used to determine the optimal parameters and best feature subset for the 
FKNN classifier. The outer loop is used for estimating the performance of the FKNN classifier. In 
order to keep the same proportion of bankrupt and non-bankrupt companies of each set as that of 
the entire dataset, here a stratified 10-fold CV is employed as the outer loop and a stratified 9-fold 
CV is used for the inner loop. It is also referred to as the nested stratified 10-fold CV, which is also 
used in [59] for the microarray gene data analysis. 

4.2 Experimental Scheme   
The proposed experimental framework was articulated around the following three main 

experiments. 
1) The first experiment aimed at assessing the effectiveness of the FKNN approach in 

bankruptcy prediction in the whole original feature space. For comparison purpose, we 
implemented five other reference classification approaches, namely KNN, SVM [60], back 
propagation neural network (BPNN), the probabilistic neural network (PNN) and extreme learning 
machine (ELM) [61]. In addition, we have implemented GA based FKNN (GA-FKNN) for 
comparison purpose. 

2) In the second experiment, it was plan to assess the capability of the proposed 
PTVPSO-FKNN model with feature selection to boost further the performance of the FKNN 
classifier by using the time-varying PSO approach. Furthermore, we attempted to investigate the 
whole evolutionary process of TVPSO in performing the parameter optimization and feature 
selection. 

3) The third experimental part had for objective to assess the capability of the proposed 
parallel TVPSO-FKNN model to enhance further the efficiency of the serial TVPSO-FKNN 
model with respect to the CPU time.  

4.3 Experimental Setup 
The proposed PTVPSO-FKNN model is implemented using Microsoft Visual C++ 6.0 and 

OpenMP. For SVM, LIBSVM implementation is utilized, which is originally developed by Chang 
and Lin [62]. Regarding ELM, the implementation by Zhu and Huang available from 
http://www3.ntu.edu.sg/home/egbhuang is used. We implement PSO, GA, FKNN and KNN from 
scratch. BPNN and PNN are developed by using the Neural Network Toolbox of Matlab 7.0. The 
computer is Intel Quad-Core Xeon 2.0 GHz CPU; 4 GB RAM and the system is Windows Server 
2003. 

The detail parameter setting for PTVPSO-FKNN is as follows. The number of the iterations and 
particles  are  set  to  250  and  8  for  the  Wieslaw  dataset,  200  and  5  for  the  Australian  dataset,  
respectively. The searching ranges for k and m are as follows: k∈[1, 100] and m∈[1, 10] for the 
Wieslaw dataset, k∈[1, 100] and m∈[1, 100] for the Australian dataset. vmax is set about 60% of 
the dynamic range of the variable on each dimension for the continuous type of dimensions. For 



the discrete type particle for feature selection, [-vmax, vmax] is set as [-6, 6]. As suggested in [52], c1i, 
c1f, c2i and c2f are set as follows: c1i =2.5, c1f =0.5, c2i =0.5, c2f =2.5. According to our preliminary 
experiment, wmax and wmin are set to 0.9 and 0.4, respectively.  

For GA, the solution is binary-encoded and the roulette wheel selection algorithm is used. The 
crossover probability and mutation probability are set to 0.8 and 0.05, respectively. To perform a 
fair comparison, the same computational effort is used in TVPSO and GA. That is, the maximum 
generation, population size and searching range of the parameters in GA are the same as those in 
TVPSO. For SVM, we consider the nonlinear SVM based on the popular Gaussian (RBF) kernel, 
and a grid-search technique [57] is employed using 10-fold CV to find out the optimal parameter 
values of RBF kernel function. The range of the related parameters C and γ are varied between C 
= {2-5,  2-3,…,215} and γ =  {2-15,2-13,…,21}. There will be 11 9 99´ = parameter combinations of 
( , )C g  are tried and the one with the best CV accuracy is chosen as the parameter values of the 
RBF kernel. Then the best parameter pair ( , )C g  is used to create the model for training. For 
KNN, we find the best value of k within the range [1,100] by using 10-fold CV. Concerning 
BPNN, we use the three layer back-propagation network. We try different settings of the number 
of nodes in the hidden layers (5, 10, 15, 20, 25 and 30) and the different learning epochs (50, 100, 
200 and 300) as the stopping criteria for training. In PNN, the pattern layer uses RBF neuron with 
spread parameter of 0.1 and 0.8 give the best accuracies by using the 10-fold CV on the Wieslaw 
dataset and Australian dataset, respectively. Hence these two values will be used for the 
subsequent analysis. In ELM the sigmoid activation function is used to compute the hidden layer 
output matrix. ELM models are built for 100 different numbers of neurons between 1 and 100. 
The best number of neurons will be taken to create the training model. 

4.4 Measure for Performance Evaluation 
Type I error, Type II error, total classification accuracy (ACC) and the area under the Receiver 

Operating Characteristic curve (AUC) [63] were used to test the performance of the proposed 
PTVPSO-FKNN model. They are the most widely used measures to assess the performance of 
bankruptcy prediction systems [25]. Before defining these measures, we introduced the concept of 
confusion matrix, which is presented in Table 2. Where TP is the number of true positives, which 
means that some cases with ‘positive’ class (with bankruptcy) is correctly classified as positive; 
FN, the number of false negatives, which means that some cases with the ‘positive’ class is 
classified as negative ; TN, the number of true negatives, which means that some cases with the 
‘negative’ class (with non-bankruptcy) is correctly classified as negative; and FP, the number of 
false positives, which means that some cases with the ‘negative’ class is classified as positive.  

 
<Insert Table 2 here> 

 
Type I and Type II errors are two important measures which describe how well the classifier 

discriminates between case with non-bankruptcy and with bankruptcy. Type I error measures the 
proportion of non-bankrupt cases which are incorrectly identified as bankrupt ones. It is defined as 
Type I error = FP / (FP + TN). Type II error measures the proportion of bankrupt cases which are 
incorrectly identified as non-bankrupt ones. It is defined as Type II error = FN / (TP + FN). The 
ACC is calculated by TP + TN / (TP + FP + FN + TN). The receiver operating characteristic (ROC) 
curve is a graphical display that gives the measure of the predictive accuracy of a logistic model. 



The curve displays the true positive rate and false positive rate. AUC is the area under the ROC 
curve, which is one of the best methods for comparing classifiers in two-class problems.  

5 Experimental Results and Discussion  

5.1 Experiment I: Classification in the Whole Original Feature Space 
As mentioned earlier, in this experiment we evaluated the effectiveness of the proposed model 

on the original feature space. In order to verify the effectiveness of the proposed model, 
TVPSO-FKNN was compared with five other reference classifiers (SVM, KNN, BPNN, PNN and 
ELM). Table 3 and Table 4 show the results achieved with all six investigated classifiers 
(PTVPSO-FKNN, SVM, KNN, BPNN, PNN and ELM) for the Wieslaw dataset and the 
Australian dataset respectively. It is well known that higher the AUC value the better the classifier 
is said to be. Accordingly, the classifiers are arranged in the descending order of AUC in the tables. 
As clearly indicated in Table 3, PTVPSO-FKNN outperforms all other methods with the AUC of 
81.69%,  except  the  Type  II  error  which  is  slightly  higher  than  that  of  PNN.  PNN  is  next  to  
PTVPSO-FKNN with the AUC of 79.89%, Type I error of 21.71%, Type II error of 18.52% and 
ACC of 79.58%, followed by BPNN, KNN, ELM and SVM. For the Australian dataset whose 
results are shown in Table 4, we can also observe that PTVPSO-FKNN performs best among all 
the available methods with the AUC of 87.07%, except the Type I error which is slightly higher 
than that of SVM. SVM is next to PTVPSO-FKNN with the AUC of 86.08%, Type I error of 
9.36%, Type II error of 18.47% and ACC of 85.80%, followed by ELM, KNN, BPNN and PNN. 
The results are interesting and exciting, which suggests that the FKNN approach can become a 
promising alternative bankruptcy prediction tool in financial decision-making, where SVM and 
ANN are known to be the best models [26].  

 
<Insert Table 3 here> 
<Insert Table 4 here> 

 
The better performance of the proposed model is owing to the fact that the TVPSO has aided 

the FKNN classifier to achieve the maximum classification performance by automatically 
detecting the optimal neighborhood size k and the fuzzy strength parameter m. The detailed 
results obtained by the proposed method via 10-fold CV are shown in Table 5 and Table 6 for the 
Wieslaw dataset and the Australian dataset respectively. As shown in the two tables, it can be 
observed that the values of k and m are different for each fold of the data. With the optimal 
combination of k and m, FKNN obtained different best classification performance in each fold in 
terms of the ACC, Type I error, Type II error and AUC. In addition, according to our preliminary 
experiment, k and m can be varied automatically when perform another run of 10-fold CV. The 
explanation lies in the fact that the two parameters are evolved together by the TVPSO algorithm 
according to the specific distribution of the training data at hand. It indicates that the optimal 
values of k and m can always be adaptively specified by TVPSO during each run.  

 
<Insert Table 5 here> 
<Insert Table 6 here> 

 



5.2 Experiment II: Classification with the PTVPSO-FKNN Model with Feature 
Selection 
As described earlier, the proposed PTVPSO-FKNN model aimed at enhancing the FKNN 
classification process by not only dealing with the parameters optimization but also automatically 
identifying the subset of the most discriminative features. In this experiment, we attempt to 
explore the capability of the PTVPSO-FKNN to further enhance the performance of the FKNN 
classifier by using the TVPSO. Table 7 and Table 8 list the results of PTVPSO-FKNN with and 
without feature selection for the Wieslaw dataset and the Australian dataset respectively. As shown 
in Table 7, results obtained on the Wieslaw dataset using PTVPSO-FKNN with feature selection 
significantly outperforms PTVPSO-FKNN without feature selection in terms of Type I error, Type 
II error, AUC and ACC at the statistical significance level of 0.05. On the Australian dataset, 
PTVPSO-FKNN with feature selection significantly outperforms PTVPSO-FKNN without feature 
selection  in  terms  of  Type  I  error,  AUC and  ACC at  the  statistical  significance  level  of  0.1.  By  
using feature selection, the ACC, AUC, Type I error and Type II error have been improved by 
2.5%, 2.55%, 1.71% and 3.38% on the Wieslaw dataset, and by 2.47%, 2.74%, 4.03% and 1.47% 
on the Australian dataset, respectively. For comparison purpose, we conducted the comparative 
study between TVPSO based and GA based FKNN on the two datasets as shown in Table 9 and 
Table 10. From Table 9, it can be seen that PTVPSO-FKNN outperforms GA-FKNN in terms of 
Type I error, AUC and ACC on the Wieslaw dataset, though the difference between them is not 
statistically significant. For the Australian dataset, PTVPSO-FKNN significantly outperforms 
GA-FKNN in terms of AUC and ACC at the significant level of 0.1, and achieves better 
performance in terms of Type I error and Type II error as shown in Table 10. From the tables, we 
can also find that PTVPSO-FKNN has achieved better performance with a smaller feature subset 
than GA-FKNN on both datasets under investigation. Moreover, during the evolving process, we 
also  observe  that  the  convergence  speed  of  TVPSO  is  faster  than  that  of  GA,  and  GA  is  more  
time-consuming than TVPSO as well. It reflects that TVPSO has stronger search ability than GA 
on the tested problems. In addition, it is interesting to see that the standard deviation for the 
acquired performance by the PTVPSO-FKNN is much smaller than that of GA-FKNN on both 
datasets, which indicates consistency and stability of the proposed model. 
 

<Insert Table 7 here> 
<Insert Table 8 here> 
<Insert Table 9 here> 
<Insert Table 10 here> 

 
To explore how many features and what features are selected during the PSO feature selection 

procedure, we attempted to further investigate the detail of the feature selection mechanism of the 
PSO algorithm. For simplicity, here we only took the Wieslaw dataset for example. The original 
numbers  of  features  of  the  dataset  is  30.  As  shown in  Table  11,  not  all  features  are  selected  for  
classification after the feature selection. Furthermore, feature selection has increased the 
classification accuracy, as demonstrated in Table 7 and Table 8. The average number of selected 
features by PTVPSO-FKNN is 15.3, and its most important features are C/CL(X1), C/TA(X2), 
CA/TA(X4), WC/TA(X5), S/I(X7), NP/TA(X9), S/R2(X16), S/CA(X18), S/TA2(X20), R/L(X23), 
L/TA(X25) and LTL/E(X27), which can be found in the frequency of the selected features of 



10-fold CV as shown in Fig. 4. Note that the important features (financial ratios) selected by the 
proposed model are indeed important from the knowledge perspective also as they are related to 
current liabilities and long term liabilities, current assets, shareholders’ equity and cash, sales, 
inventory, working capital, net profit, receivables, liabilities, total assets.    

 
<Insert Table 11 here> 
<Insert Fig.4 here> 
<Insert Fig.5 here> 

 
To observe the evolutionary process in PTVPSO-FKNN, Fig. 5 shows the evolution of the best 

fitness for fold 1# within 10-fold CV on the Wieslaw dataset. It should be noted that these results 
are calculated based on the global best positions, namely, the fitness of all the local best positions 
on the training set are calculated to obtain the best fitness of the population in each generation. 
The evolutionary processes are quite interesting. It can be observed that the fitness curves 
gradually improved from iteration 1 to 130 and exhibited no significant improvements after 
iteration 22, eventually stopped at the iteration 130 where the particles reached the stopping 
criterion (100 successively same gbest values). The fitness increase rapidly in the beginning of the 
evolution, after certain number of generations, it starts increasing slowly. During the latter part of 
the evolution, the fitness keeps stability until the stopping criterion is satisfied. This demonstrates 
that PTVPSO-FKNN can converge quickly toward the global optima, and fine tune the solutions 
very efficiently. The phenomenon illustrates the effectiveness of PTVPSO-FKNN in 
simultaneously evolving the parameters (k and m) and the features through using the TVPSO 
algorithm. 

5.3 Experiment III: Comparison between the Parallel TVPSO-FKNN Model and the 
Serial One 

In order to reduce further the running time of the serial TVPSO-FKNN model, we implemented 
the TVPSO-FKNN model in a parallel environment. To validate the efficiency of the parallel 
version, here we attempted to compare the performance of the PTVPSO-FKNN with that of 
TVPSO-FKNN. Table 12 reports the average results of Type I error, Type II error, AUC, ACC and 
computational time in seconds via 10-fold CV using two models on the two datasets. It can be 
seen that PTVPSO-FKNN and TVPSO-FKNN give almost the same results on both datasets, 
minor difference between the parallel model and the serial one is attributed to different partitions 
of the data are chosen when perform different folds within 10-fold CV. Thus, it verifies the 
correctness of the parallel design and implementation.  
 

<Insert Table 12 here> 
<Insert Fig.6 here> 

 
As shown in the Table 12, it can be seen that the average training time within the 10-fold CV for 

the TVPSO-FKNN was about 3.2 times that of the PTVPSO-FKNN on the Wieslaw dataset, while 
about 3.3 times that of PTVPSO-FKNN on the Australian dataset. Moreover, the average CPU 
time spent by the two methods within 10-fold CV has been presented in Fig.6. It can be observed 
that PTVPSO-FKNN cost much fewer CPU time than TVPSO-FKNN on each fold of the dataset. 



It indicates that the TVPSO-FKNN has benefited a great deal from the parallel implementation 
with respect to the computational time. It is worth noticing that here only a quad-core processor is 
used in this experiment, thus the computational time will be further reduced with increase of the 
cores.  

6 Conclusions and Future work 
This study provides a novel model for bankruptcy prediction. The main novelty of this model is 

in the proposed TVPSO-based approach, which aims at aiding the FKNN classifier to achieve the 
maximum classification performance. On the one hand, the continuous TVPSO is employed to 
adaptively specify the two important parameters k and m of  the  FKNN  classifier.  On  the  other  
hand, the binary TVPSO is adopted to identify the most discriminative features. Moreover, both 
the continuous and binary TVPSO are implemented in a parallel environment to reduce further the 
computational time. The experimental results demonstrate that the developed model performs 
significantly better than the other five state-of-the-art classifiers (KNN, SVM, BPNN, PNN and 
ELM) in financial application field in terms of Type I error, Type II error, ACC and AUC on two 
real-life cases. In addition, the experiment reveals that the PTVPSO-FKNN is also a powerful 
feature selection tool which has detected a subset of best discriminative financial ratios that are 
really important from the knowledge perspective. Last but not least, the proposed model computes 
rather efficiently owing to the high performance computing technology. 

Hence, it can be safely concluded that, the developed PTVPSO-FKNN model can serve as a 
promising alternative early warning system in financial decision-making. Meanwhile, we should 
note that the proposed model does perform efficiently on the data at hand; however, it is not 
obvious that the parallel algorithm will lead to significant improvement when applying to the 
financial data with larger instances. Future investigation will pay much attention to evaluating the 
proposed model in the larger datasets.  
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Figure Captions: 
Fig.1. Flowchart of the TVPSO-FKNN model 
Fig.2. Parallel architecture of the PTVPSO-FKNN model 
Fig.3. Two-dimensional distribution of the two classes (bankrupt and non-bankrupt) in the 
subspace formed by the best couple of features obtained with the PCA algorithm 
Fig.4. The frequency of the selected features via 10-fold CV on the Wieslaw dataset 
Fig.5. The best fitness during the training stage for fold #1 on the Wieslaw dataset 
Fig.6. The average CPU time costs of two models via 10-fold CV on the Wieslaw dataset and 
Australian dataset (The legend TVPSO-FKNN-WIE and PTVPSO-FKNN-WIE represent the 
serial model and the parallel model performing on the Wieslaw dataset respectively, 
TVPSO-FKNN-AUS and PTVPSO-FKNN-AUS represent the serial model and the parallel model 
performing on the Australian dataset respectively). 
 
 
 
Table Captions: 
Table 1 The description of the Wieslaw dataset 
Table 2 Confusion matrix for bankruptcy prediction 
Table  3 The ACC, Type I error, Type II error and AUC achieved by different classifiers on the 
Wieslaw dataset 

Table  4 The ACC, Type I error, Type II error and AUC achieved by different classifiers on the 
Australian dataset 
Table 5 The detailed results obtained by TVPSO-FKNN via 10-fold CV on the Wieslaw dataset 
Table 6 The detailed results obtained by TVPSO-FKNN via 10-fold CV on the Australian dataset 
Table  7 Experimental results of PTVPSO-FKNN with and without feature selection (%) on the 
Wieslaw dataset 
Table  8 Experimental results of PTVPSO-FKNN with and without feature selection (%) on the 
Australian dataset 
Table 9 Experimental results of PTVPSO-FKNN vs. GA-FKNN (%) on the Wieslaw dataset 
Table 10 Experimental results of PTVPSO-FKNN vs. GA-FKNN (%) on the Australian dataset 
Table 11 The  subset  of  features  selected  by  PTVPSO-FKNN  via  10-fold  CV  on  the  Wieslaw  
dataset 
Table 12 The performance of PTVPSO-FKNN and TVPSO-FKNN 
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No. Predictor variable name Financial ratios 

X1 cash/current liabilities C/CL 

X2 cash/total assets C/TA 

X3 current assets/current liabilities CA/CL 

X4 current assets/total assets CA/TA 

X5 working capital/total assets WC/TA 

X6 working capital/sales WC/S 

X7 sales/inventory S/I 

X8 sales/receivables S/R1 

X9 net profit/total assets NP/TA 

X10 net profit/current assets NP/CA 

X11 net profit/sales NP/S1 

X12 gross profit/sales GP/S 

X13 net profit/liabilities NP/L 

X14 net profit/equity NP/E 

X15 net profit/(equity + long term liabilities) NP/EL 

X16 sales/receivables S/R2 

X17 sales/total assets S/TA1 

X18 sales/current assets S/CA 

X19 (365*receivables)/sales R/S 

X20 sales/total assets S/TA2 

X21 liabilities/total income L/TI 

X22 current liabilities/total income CL/TI 

X23 receivables/liabilities R/L 

X24 net profit/sales NP/S2 

X25 liabilities/total assets L/TA 

X26 liabilities/equity L/E 

X27 long term liabilities/equity LTL/E 

X28 current liabilities/equity CL/E 

X29 EBIT (Earnings Before Interests and Taxes)/total assets EBIT/TA 

X30 current assets/sales CA/S 

Table(1)



 

 Actual positive 

(Bankruptcy) 

Actual negative 

( Non-Bankruptcy) 

Predicted positive 

( Bankruptcy) 

True Positive (TP) False Positive (FP) 

Predicted negative 

( Non-Bankruptcy) 

False Negative (FN) True Negative (TN) 

Table(2)



The best value is shown in bold. 

Classifiers ACC (%) Type I error (%) Type II error (%) AUC (%) 

PTVPSO-FKNN 81.67 17.58 19.04 81.69 

PNN 79.58 21.71 18.52 79.89 

BPNN 77.92 20.84 21.46 78.71 

KNN 78.75 21.46 21.39 78.57 

ELM 77.50 19.11 23.97 78.46 

SVM 76.67 18.96 26.55 77.26 

Table(3)



The best value is shown in bold. 

Classifiers ACC (%) Type I error (%) Type II error (%) AUC (%) 

PTVPSO-FKNN 87.10 13.21 12.66 87.07 

SVM 85.80 9.36 18.47 86.08 

ELM 85.65 12.89 15.31 85.90 

KNN 85.80 12.12 16.25 85.82 

BPNN 85.80 14.02 14.56 85.71 

PNN 85.42 12.88 16.41 85.36 

Table(4)



 
Fold #k #m ACC (%) Type I error (%) Type II error (%) AUC (%) 

#1 100 1.27 83.3333 18.18 15.3846 83.2168 

#2 55 1.33 83.3333 18.18 15.3846 83.2168 

#3 56 1.39 83.3333 16.67 16.6667 83.3333 

#4 84 1.29 79.1667 18.18 23.0769 79.3706 

#5 38 1.35 79.1667 18.18 23.0769 79.3706 

#6 66 1.14 83.3333 16.67  16.6667 83.3333 

#7 66 1.34 79.1667 18.18 23.0769 79.3706 

#8 1 1.33 79.1667 16.67 25.0000 79.1667 

#9 1 3.00 83.3333 18.18 15.3846 83.2168 

#10 14 1.27 83.3333 16.67 16.6667 83.3333 

Avg. 48.10 1.47 81.67 17.58 19.04 81.69 

Dev. 34.05 0.54 2.15 0.78 3.96 2.04 

Table(5)



 

Fold #k #m ACC (%) Type I error (%) Type II error (%) AUC (%) 

#1 8 74.99 88.41 22.22 0 88.89 

#2 78 97.94 79.71 20.00 20.59 79.71 

#3 77 95.73 91.30 12.20 3.57 92.12 

#4 99 98.06 84.06 10.81 21.88 83.66 

#5 45 61.80 88.41 10.53 12.90 88.29 

#6 66 76.89 89.86 9.52 11.11 89.68 

#7 9 23.09 91.30 10.81 6.25 91.47 

#8 100 100 86.96 13.16 12.90 86.97 

#9 71 69.73 85.51 10.00 20.69 84.66 

#10 88 32.21 85.51 12.82 16.67 85.26 

Avg. 72.10 73.04 87.10 13.21 12.66 87.07 

Dev. 27.53 27.50 3.58 4.36 7.56 3.82 

Table(6)



 

Performance metric PTVPSO-FKNN without 

feature selection 

PTVPSO-FKNN with 

feature selection 

Paired t-test 

 p-value 

Type I error 17.58  0.78 15.87 2.42  0.043 

Type II error 19.04  3.96 15.66 1.94  0.020 

AUC 81.69  2.04 84.24 1.75  0.003 

ACC 81.67  2.15 84.17  1.76  0.005 

Table(7)



 

Performance metric PTVPSO-FKNN without 

feature selection 

PTVPSO-FKNN with 

feature selection 

Paired t-test 

 p-value 

Type I error 13.21  4.36 9.18  4.49 0.090 

Type II error 12.66  7.56 11.19  3.58 0.490 

AUC 87.07  0.04 89.81  2.27 0.053 

ACC 87.10  0.04 89.57  2.25 0.090 

Table(8)



 
Performance metric PTVPSO-FKNN  GA-FKNN Paired t-test 

 p-value 

Type I error 15.87 2.42  17.02 5.08 0.354 

Type II error 15.66 1.94  14.94 10.47 0.544 

AUC 84.24 1.75  84.02 4.20 0.450 

ACC 84.17  1.76  83.33  3.40 0.443 

Selected features 15.30  2.75 16.00  3.13 0.010 

Table(9)



 

Performance metric PTVPSO-FKNN   GA-FKNN Paired t-test 

 p-value 

Type I error 9.18  4.49 11.50  4.62 0.138 

Type II error 11.19  3.58 12.32  5.36 0.455 

AUC 89.81  2.27 88.09  2.77 0.079 

ACC 89.57  2.25 87.97  2.46 0.075 

Selected features 9.50  1.58 10.30  1.70 0.011 

Table(10)



 

Fold  Selected features 

#1 X2 X4 X5 X7 X10 X11 X12 X15 X20 X22 X23 X26 X27   

#2 X1 X3 X4 X6 X7 X8 X11 X13 X15 X16 X17 X18 X19 X20 X23 X25 X30 

#3 X1 X2 X4 X6 X7 X9 X13 X16 X20 X22 X23 X24 X25 X27 

#4 X1 X2 X3 X4 X5 X9 X10 X12 X13 X15 X17 X18 X20 X22 X23 X24 X25 X29 

#5 X1 X2 X3 X6 X7 X8 X9 X10 X11 X12 X15 X18 X19 X20 X23 X25 X27 X28 X29 X30 

#6 X5 X7 X9 X14 X17 X18 X19 X21 X23 X24 X25 X27 X30 

#7 X2 X4 X5 X7 X8 X12 X13 X16 X17 X18 X21 X23 X25 X29 X30 

#8 X1 X2 X3 X4 X5 X7 X8 X16 X19 X20 X25 X27 X29 

#9 X1 X5 X9 X12 X16 X18 X20 X23 X24 X25 X26 X28 

#10 X1 X2 X5 X8 X9 X10 X11 X14 X15 X16 X17 X18 X21 X23 X25 X27 X28 X30 

Table(11)



 
Date sets PTVPSO-FKNN TVPSO-FKNN 

 Type I 

error 

(%) 

Type II 

error 

(%) 

AUC 

(%) 

ACC 

(%) 

CPU 

Time 

(s) 

Type I 

error 

(%) 

Type II 

error 

(%) 

AUC 

(%) 

ACC 

(%) 

CPU 

Time  

(s) 

Wieslaw 15.87 

  

2.42 

15.66 

  

1.94 

84.24 

  

1.75 

84.17 

  

1.76 

120.21 

  

23.34 

15.53

  

5.47  

15.95 

  

1.87 

84.26 

  

1.98 

84.20

  

1.55 

379.56

  

15.24 

Australian 9.18 

  

4.49 

11.19 

  

3.58 

89.81

  

2.27 

89.57

  

2.25 

208.31 

  

4.74 

8.87 

  

4.43 

11.82 

  

3.58 

89.66

  

2.57 

89.57

  

2.63 

681.26

  

12.54 

Table(12)
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Abstract: 
Bankruptcy prediction is one of the most important issues in financial decision-making. 
Constructing effective corporate bankruptcy prediction models in time is essential to make 
companies or banks prevent from bankruptcy. This study proposes a novel bankruptcy prediction 
model based on an adaptive fuzzy k-nearest neighbor (FKNN) method, where the neighborhood 
size k and the fuzzy strength parameter m are adaptively specified by the continuous particle 
swarm optimization (PSO) approach. In addition to performing the parameter optimization for 
FKNN, PSO is also utilized to choose the most discriminative subset of features for prediction. 
Adaptive control parameters including time-varying acceleration coefficients (TVAC) and 
time-varying inertia weight (TVIW) are employed to efficiently control the local and global search 
ability of PSO algorithm. Moreover, both the continuous and binary PSO are implemented in 
parallel on a multi-core platform. The proposed bankruptcy prediction model, named 
PTVPSO-FKNN, is compared with five other state-of-the-art classifiers on two real-life cases. The 
obtained results clearly confirm the superiority of the proposed model in terms of classification 
accuracy, Type I error, Type II error and area under the receiver operating characteristic curve 
(AUC) criterion. The proposed model also demonstrates its ability to identify the most 
discriminative financial ratios. Additionally, the proposed model has reduced a large amount of 
computational time owing to its parallel implementation. Promisingly, PTVPSO-FKNN might 
serve as a new candidate of powerful early warning systems for bankruptcy prediction with 
excellent performance. 
 
Keywords: Fuzzy k-nearest neighbor; Parallel computing; Particle swarm optimization; Feature 
selection; Bankruptcy prediction 

1. Introduction  
Accurately identifying the potentially financial failure of companies remains a goal of many 

stakeholders involved. Because there is no underlying economic theory of bankruptcy, searching 
for more accurate bankruptcy prediction models remains the goal in the field of the bankruptcy 
prediction. As a matter of fact, bankruptcy prediction can be formulated as the problem of solving 
classification task. A fair amount of classification models has been developed for bankruptcy 
prediction. These models have progressed from statistical methods to the artificial intelligence (AI) 
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approaches. A number of statistical methods such as the simple univariate analysis [1], 
multivariate discriminant analysis technique [2], logistic regression approach [3] and factor 
analysis technique [4] have been typically used for financial applications including bankruptcy 
prediction. Recent studies in the AI approach, such as artificial neural networks (ANN) 
[5][6][7][8][9][10][11], rough set theory [12][13][14], support vector machines (SVM) 
[15][16][17], k-nearest neighbor method (KNN) [18][19][20], Bayesian network models [21][22] 
and other different methods such as hybrid methods and ensemble methods [23][24][25][26] have 
also been successfully applied to bankruptcy prediction (see [25][26] for detail). Among these 
techniques, ANN has become one of the most popular techniques for the prediction of corporate 
bankruptcy due to its high prediction accuracy. However, a major disadvantage of ANN lies in 
their knowledge representation. The black box nature of ANN makes it difficult for humans to 
understand how the networks predict the bankruptcy.   

Compared with ANN, KNN is simple, easily interpretable and can achieve acceptable accuracy 
rate. Albeit these advantages, the standard KNN methods place equal weights on all the selected 
neighbors regardless of their distances from the query point. An improvement over the standard 
KNN classifier is the Fuzzy k-nearest neighbor classifier (FKNN) [27], which uses concepts from 
fuzzy logic to assign degree of membership to different classes while considering the distance of 
its k-nearest neighbors. It means that all the instances are assigned a membership value in each 
class rather than binary decision of ‘bankruptcy’ or ‘non-bankruptcy’. Points closer to the query 
point contributes larger value to be assigned to the membership function of their corresponding 
class in comparison to far away neighbors. Class with the highest membership function value is 
taken as the winner. The FKNN method has been frequently used for the classification of 
biological data [28][29][30], image data [31][32] and so on. Nevertheless, only few works have 
paid attention to using FKNN to dealing with the financial problems. Bian et al. [33] used FKNN 
as a reference classifier in their experiments in order to show the superiority of the proposed 
Fuzzy-rough KNN method, which incorporated the rough set theory into FKNN to further 
improve the accuracy of bankruptcy prediction. However, they did not comprehensively 
investigate the neighborhood size k and the fuzzy strength parameter m, which play a significant 
role in improving the prediction result. This work will explore the full potential of FKNN by 
automatically determining k and m to exploit the maximum classification accuracy for bankruptcy 
prediction. 
   Besides choosing a good learning algorithm, feature selection is also an important issue in 
building the bankruptcy prediction models [25][34][35][36][37], which refers to choosing subset 
of attributes from the set of original attributes. The purpose of the feature selection is to identify 
the significant features and build a good learning model. The benefits of feature selection are 
threefold: improving the prediction performance of the predictors, providing faster and more 
cost-effective predictors, and providing a better understanding of the underlying process that 
generated the data [38]. In bankruptcy prediction, genetic algorithms (GA) is usually used to select 
a subset of input features [39][40][41], to find appropriate hyper-parameter values of a predictor 
(for example, the kernel width and the regularization constant in the case of SVM) [35][42][43], 
or to determine predictor parameters (for example, Multilayer perceptron weights) [44][45]. 
Compared with GA, PSO algorithm [46] has no crossover and mutation operators, it is simple and 
computationally inexpensive both in memory and runtime. Additionally, every particle adjusts 
their velocity and position according to the local best and global best. So that all the particles have 



a powerful search capability, which can help the swarm find the optimal solution. As for GA, after 
finding a locally optimum, it  is  difficult  for it  to find out a much better one even with a random 
search strategy in terms of mutation operator especially within a reasonable searching time. In this 
work, we will focus on exploring the PSO-based parameter optimization and feature selection 
approach. The continuous PSO algorithm will be employed to evolve an adaptive FKNN, where 
the neighborhood size k and the fuzzy strength parameter m are adaptively specified. On the other 
hand, the binary PSO will be used as a feature selection vehicle to identify the most informative 
features as well.  
  When dealing with the practical problems, the evolutionary-based methods such as the PSO and 
GA will cost a lot of computational time. There is an urgent need to improve the performance 
using high-performance computing techniques. For this reason, it is one of the major purposes of 
this paper to use a parallel environment to speed up the search and optimization process. Both the 
continuous and binary PSO are implemented on a multi-core platform using OpenMP (Open 
Multi-Processing) which is a portable, scalable model that gives programmers a simple and 
flexible interface for developing parallel applications for platforms [47]. The efficiency and 
effectiveness of the proposed bankruptcy prediction model is validated by comparing with other 
five state-of-the-art classification methods on two real-life cases. The experimental results 
demonstrate that the proposed model can not only obtain the most appropriate parameters but also 
show high discriminating power as a feature selection tool. Further comparison is also made 
between the parallel model and serial one. Based on the experiments conducted, it is inferred that 
the parallel model PTVPSO-FKNN can significantly reduce the computational time.  

The rest of the paper is organized as follows. In Section 2, we give a brief description of FKNN 
method and PSO algorithm. Section 3 proposes our model, the simultaneous optimization of 
relevant parameters and feature subset by the PSO approach in a parallel environment. In the next 
section, the detailed experimental design is presented, and Section 5 describes all the empirical 
results and discussion. Finally, Conclusions and future work are summarized in Section 6. 

2. Background Materials 

2.1 Fuzzy k-Nearest Neighbor Algorithm 
The k-nearest neighbor algorithm (KNN) is one of the oldest and simplest non-parametric 

pattern classification methods. In the KNN algorithm a class is assigned according to the most 
common class amongst its k-nearest neighbors. In 1985, Keller proposed a fuzzy version of KNN 
by incorporating the fuzzy set theory into the KNN algorithm, and named it as “fuzzy KNN 
classifier algorithm” (FKNN) [27]. According to his approach, rather than individual classes as in 
KNN, the fuzzy memberships of samples are assigned to different categories according to the 
following formulation: 

2/( 1)

1

2/( 1)

1

(1 || || )
( )

(1 || || )

k
m

ij j
j

i k
m

j
j

u x x
u x

x x

-

=

-

=

-
=

-

å

å
                                                   (1)  

where i=1,2,…C, and j=1,2,…,k, with C number of classes and k number of nearest neighbors. 
The fuzzy strength parameter m is used to determine how heavily the distance is weighted when 
calculating each neighbor’s contribution to the membership value, and its value is usually chosen 
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as (1, )mÎ ¥ . ||x - xj|| is the distance between x and its jth nearest neighbor xj. Various metrics can 
be chosen for ||x - xj||, such as Euclidean distance, Hamming distance, and Mahalanobis distance, 
among other distances. In this study, the Euclidean metric is used. uij is the membership degree of 
the pattern xj from the training set to the class i, among the k nearest neighbors of x. There are two 
ways [27] to define uij, one way is the crisp membership, i.e., each training pattern has complete 
membership in their known class and non-memberships in all other classes. The other way is the 
constrained fuzzy membership, i.e., the k nearest neighbors of each training pattern (say xk) are 
found, and the membership of xk in each class is assigned as: 
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The value nj is the number of neighbors found which belong to the jth class. Note that, the 
memberships calculated by Eq. (2) should satisfy the following equations:  
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In our experiments, we have found that the second way leads to better classification accuracy. 
After calculating all the memberships for a query sample, it is assigned to the class with which it 
has the highest membership value, i.e., 
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The pseudo-code of the FKNN algorithm is given below: 
 

 Input: (a) The training set X with the labeled patterns { | 1,2, , }ix i n= K . 
       (b)  The  test  pattern  y. 
Output: (a) Class label of y. 

        (b) Confidence for each class label.   
ALGORITHM: 
For i = 1, 2, … , to n 

     Compute the distance from xi to y using the Euclidean metric. 
     If i ≤ k 
          Include  xi  in  the  set  of  k nearest neighbors. 
     Else if (xi is closer to y than any previous nearest neighbors) 
           Delete  the  farthest  of  the  k nearest neighbors. 

Include xi in the set of k nearest neighbors. 
End  if   

End for 
For c = 1 to C  
Compute ui(x) using (1). 
End for  
Crisp class label of y is assigned to the class with which it has the highest membership value 



using (6).  
 

2.2 Time Variant Particle Swarm Optimization (TVPSO)  
PSO is inspired by the social behavior of organisms such as bird flocking and fish schooling, 

which was first developed by Kennedy and Eberhart [46][48]. In PSO each individual is treated as 
a particle in d-dimensional space, and each particle has a position and velocity. The position vector 
of the ith particle is represented as Xi = (xi,1,xi,2,…,xi,d), and its according velocity is represented as 
Vi = (vi,1,vi,2,…,vi,d). The velocity and position are updated as follows: 

1
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where Vector Pi =  (pi,1, pi,2,…, pi,d) represents the best previous position of the ith particle that 
gives the best fitness value, which is known as the personal best position (pbest). Vector Pg = (pg,1, 
pg,2, …, pg,d) is the best particle among all the particles in the population, which is known as the 
global best position (gbest). r1 and r2 are random numbers, generated uniformly in the range [0, 1]. 
The velocity vi,j is  restricted  to  the  range   [-vmax, vmax], in order to prevent the particles from 
flying out of the solution space. Generally, maxv  is suggested to set to be 10-20% of the dynamic 
range of the variable in each dimension [49].  

Inertia weight w, introduced by Shi and Eberhart, which is used to balance the global 
exploration and local exploitation [50]. A large inertia weight facilitates the global search, while a 
small inertia weight facilitates the local search. In order to reduce the weight over the iterations 
allowing the algorithm to exploit some specific areas, the inertia weight w is updated according to 
the following equation:  
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where maxw , minw  are the predefined maximum and minimum values of the inertia weight w, t is 
the current iteration of the algorithm and maxt  is the maximum number of iterations. Usually the 
value of w is varied between 0.9 and 0.4. Eq. (9) is also known as time-varying inertia weight 
(TVIW), which will be incorporated into the TVPSO. It has been shown to significantly improve 
the performance of PSO [51], since it makes PSO have more global search ability at the beginning 
of the run and have more local search ability near the end of the run. 1c  and 2c  are acceleration 
coefficients, which define the magnitude of the influences on the particles velocity in the 
directions of the personal and the global optima, respectively. To better balance the search space 
between the global exploration and local exploitation, time-varying acceleration coefficients 
(TVAC) have been introduced in [52]. This concept will be adopted in this study to ensure the 
better search for the solutions. The core idea of TVAC is that 1c  decreases from its initial value 

of 1ic  to 1 fc , while 2c  increases from 2ic  to 2 fc  using the following equations as in [52]. 

TVAC can be mathematically represented as follows: 
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where 1 fc , 1ic , 2 fc  and 2ic  are constants, t  is the current iteration of the algorithm and maxt  is 

the maximum number of iterations.  
  For the binary PSO, the discrete PSO version introduced by Kennedy and Eberhart [53] was 
adopted in this study. The binary PSO is searching in a discrete space (i.e.,  searching in a space 
where ‘0’ presents the feature is selected ‘1’ denotes the feature is discarded). Where a particle 
moves in a state space restricted to zero and one on each dimension, in terms of the changes in 
probabilities that a bit will be in one state or the other. If the velocity is high it is more likely to 
choose ‘1’, and lower values favor choosing ‘0’. A sigmoid function is applied to transform the 
velocity from continuous space to probability space: 
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The velocity update Eq. (7) keeps unchanged except that , ,,i j i jx p  and ,g jp Î {0,1} , and in order 

to ensure that bit can transfer between ‘1’ and ‘0’ with a positive probability, maxv  was introduced 

to limit ,i jv . The new particle position is updated using the following rule: 
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where ,( )i jsig v  is calculated according to Eq. (12), rnd  is a uniform random number in the 

range [0, 1]. 
  As described above, TVPSO is adaptive in nature by allowing its inertia weight and 
acceleration coefficients to vary with iterations during its search in the continuous and discrete 
space. This character helps the algorithm explore the search space to a greater extent. 

3. Proposed PTVPSO-FKNN Prediction Model 
In this section, we describe the proposed PTVPSO-FKNN model for bankruptcy prediction. As 

mentioned in the Introduction, the aim of this model is to optimize the FKNN classifier by 
automatically: 1) determining the number of nearest neighbors k and the fuzzy strength 
parameter m and 2) identifying the subset of best discriminative features. In order to achieve this 
goal, the continuous and binary PSO are combined together to dynamically conduct parameter 
optimization and feature selection simultaneously. The obtained appropriate feature subset is 
served as the input into the optimized FKNN model for classification. PTVPSO-FKNN takes into 
consideration two fitness values for parameter optimization and feature selection. One is the 
AUC value and the other is the number of selected features by TVPSO. Here, we first describe 
the model based on the serial PSO algorithm, termed TVPSO-FKNN, and then implement it in 
parallel. 

3.1 TVPSO-FKNN Model based on the Serial PSO Algorithm 
The flowchart of the TVPSO-FKNN model for bankruptcy prediction was constructed through the 



following main steps as shown in Fig. 1. 
Step 1: Encode the particle with n+2 dimensions. The first two dimensions are k and m which are 

continuous values. The remaining n dimensions is Boolean features mask, which is 
represented by discrete value, ‘1’ indicates the feature is selected, and ‘0’ represents the 
feature is discarded.  

Step 2: Initialize the individuals of the population with random numbers. Meanwhile, specify the 
PSO parameters including the lower and upper bounds of the velocity, the size of 
particles, the number of iterations, etc.   

Step 3: Train the FKNN model with the selected features.  
Step 4: It  is  well  known  that  higher  the  AUC  value  the  better  the  classifier  is  said  to  be.  The  

particle with high AUC value and the small number of selected features can produce a 
high fitness value. Hence, we took both of them into consideration in designing the 
objective function, the fitness value was calculated according to the following objective 
function: 
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where variable AUC in the first sub-objective function f1 represents the area under the 
ROC curve achieved by the FKNN classifier via K-fold cross-validation (CV), here K=5. 
Note that here the 5-fold CV is used to determine the optimal parameters (including k and 
m) which is different from the outer loop of 10-fold CV, which is used to do the 
performance estimation. In the second sub-objective function f2, fti is the value of feature 
mask (‘1’ represents that feature is selected and ‘0’ indicates that feature is discarded), n is 
the total number of features. The weighted summation of the two sub-objective functions is 
selected as the final objective function. In the function f, α is the weight for FKNN 
classification accuracy, β indicates the weight for the selected features. The weight can be 
adjusted to a proper value depends on the importance of the sub-objective function. 
Because the classification performance more depend on the classification accuracy, hence 
the α value is set as much bigger than that of β. According to our preliminary experiments, 
the value of α and β were taken as 0.85 and 0.15 respectively. After the fitness value was 
obtained, the global optimal fitness was saved as gfit, personal optimal fitness as pfit, 
global optimal particle as gbest and personal optimal particle as pbest. 

Step 5: Increase the number of iteration. 
Step 6: Increase the number of population. Update the position and velocity of k, m using Eqs.(7-8) 

and the features using Eq.(7), Eqs.(12-13) in each particle.  
Step 7: Train the FKNN classifier with the feature vector obtained in Step 6 and calculate the 

fitness value of each particle according to Eq. (14). Notice that PSO is used for 
optimization tasks where the neighborhood size k to be optimized is integer number. 
Hence, an extra step is taken to round the encoded value k to the nearest integer number 
before the particle is evaluated. 

Step 8: Update the personal optimal fitness (pfit) and personal optimal position (pbest) by 



comparing the current fitness value with the pfit stored in the memory. If the current 
fitness is dominated by the pfit stored in the memory, then keep the pfit and pbest in the 
memory; otherwise, replace the pfit and pbest in the memory with the current fitness 
value and particle position. 

Step 9: If the size of the population is reached, then go to Step 10. Otherwise, go to Step 6. 
Step 10: Update the global optimal fitness (gfit) and global optimal particle (gbest) by comparing 

the gfit with the optimal pfit from the whole population, If the current optimal pfit is 
dominated by the gfit stored in the memory, then keep the gfit and gbest in the memory; 
otherwise, replace the gfit and gbest in the memory with the current optimal pfit and the 
optimal pbest from the whole population.      

Step 11: If the stopping criteria are satisfied, then go to Step 12. Otherwise, go to Step 5. The 
termination criteria are that the iteration number reaches the maximum number of 
iterations or the value of gfit does not improve after 100 consecutive iterations. 

Step 12: Get the optimal (k, m) and feature subset from the best particle (gbest). 
 

<Insert Fig.1 here>   
 

3.2 Parallel Implementation of the TVPSO-FKNN (PTVPSO-FKNN) 
When dealing with the practical problems, the evolutionary-based methods such as PSO and 

GA will cost a lot of computational time. There is an urgent need to improve the performance 
using high-performance computing techniques. Consequently, we attempt to implement 
TVPSO-FKNN in parallel on multi-core processor by using OpenMP to speed up the search and 
optimization process. 

The architecture of the multi-core platform is divided into three lays as shown in Fig. 2: 1) 
TVPSO-FKNN: It consists of a number of particles, which can supply computing requirements. 
The parallel algorithm controls the iterations of particles and each particle is calculated separately. 
2) OpenMP: This component guarantees to implement parallel synchronization and establish the 
communications with operating system (OS). The main part of OpenMP is scheduler, which 
provides the system with job scheduling and allocation. 3) Multi-core processor: The job is 
dispatched by OpenMP via OS. 

 
<Insert Fig.2 here> 

 
 
The pseudo-code of the parallel PTVPSO-FKNN is as follows: 
 
Initialize system parameters. 
Train FKNN model. 
Calculate fitness. 
While (cni < mni) /*current number of iteration (cni), maximum number of iteration (mni).*/ 
   For  each particle  
     Update position. 
  Update velocity. 



  Train FKNN model. 
  Calculate fitness. 
     Calculate  pfit .     /* personal optimal fitness (pfit)*/ 
     Calculate  pbest .   /* personal optimal position (pbest)*/ 
    End  for  
    Calculate gfit.        /*global optimal fitness (gfit)*/ 
    Calculate gbest.     /*global optimal particle (gbest)*/ 
    cni = cni + 1. 
End while 

 
 

4 Experimental Design 

4.1 Data Description 
The first financial data used for this study is the Wieslaw [54] dataset which contains 30 

financial ratios and 240 cases in total (112 from bankrupt Polish companies and 128 from 
non-bankrupt ones between 1997 and 2001). All the observations cover the period spanning 2 to 5 
years before bankruptcy toke place. It should be noted that the size of the dataset is not that large 
compared to the majority of bankruptcy prediction studies. However, according to [55], the dataset 
is reliable since increasing the dataset length does not lead to the accuracy increase. The 
description of the 30 financial ratios is shown in Table 1. Fig. 3 illustrates the distribution of the 
two  classes  of  240  samples  in  the  subspace  formed  by  the  two  best  features  according  to  the  
principal component analysis algorithm [56]. As shown in this figure, there is apparently strong 
overlap between the bankrupt companies and non-bankrupt ones. 

 
<Insert Fig.3 here> 
<Insert Table 1 here> 

 
The second dataset is the Australian credit dataset, is available from the UCI Repository of 

Machine Learning Databases. The Australian credit data consists of 307 instances of creditworthy 
applicants and 383 instances where credit is not creditworthy. Each instance contains 6 nominal, 8 
numeric attributes, and 1 class attribute (accepted or rejected). This dataset is interesting because 
there is a good mixture of attributes: continuous, nominal with small numbers of values, and 
nominal  with  larger  numbers  of  values.  There  are  also  a  few  missing  values.  To  protect  the  
confidentiality of data, the attributes names and values have been changed to meaningless 
symbolic data.  

Normalization is employed to avoid feature values in greater numerical ranges dominating 
those in smaller numerical ranges, as well as to avoid the numerical difficulties during the 
calculation [57]. Generally, the data could be normalized by scaling them into the interval of [0, 1] 
or [-1, 1], here we chose the range of [-1, 1] according to the Eq. (15), where x is the original value, 
x¢  is the scaled value, amax is the maximum value of feature a, and amin  is the minimum value 
of feature a. 
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In order to gain an unbiased estimate of the generalization accuracy, the k-fold CV presented by 
Salzberg [58] was used to evaluate the classification accuracy. This study set k as 10, i.e., the data 
was divided into ten subsets. Each time, one of the 10 subsets is used as the test set and the other 9 
subsets  are  put  together  to  form  a  training  set.  Then  the  average  error  across  all  10  trials  is  
computed. The advantage of this method is that all of the test sets are independent and the 
reliability of the results could be improved. And we attempted to design our experiment using two 
loops. The inner loop is used to determine the optimal parameters and best feature subset for the 
FKNN classifier. The outer loop is used for estimating the performance of the FKNN classifier. In 
order to keep the same proportion of bankrupt and non-bankrupt companies of each set as that of 
the entire dataset, here a stratified 10-fold CV is employed as the outer loop and a stratified 9-fold 
CV is used for the inner loop. It is also referred to as the nested stratified 10-fold CV, which is also 
used in [59] for the microarray gene data analysis. 

4.2 Experimental Scheme   
The proposed experimental framework was articulated around the following three main 

experiments. 
1) The first experiment aimed at assessing the effectiveness of the FKNN approach in 

bankruptcy prediction in the whole original feature space. For comparison purpose, we 
implemented five other reference classification approaches, namely KNN, SVM [60], back 
propagation neural network (BPNN), the probabilistic neural network (PNN) and extreme learning 
machine (ELM) [61]. In addition, we have implemented GA based FKNN (GA-FKNN) for 
comparison purpose. 

2) In the second experiment, it was plan to assess the capability of the proposed 
PTVPSO-FKNN model with feature selection to boost further the performance of the FKNN 
classifier by using the time-varying PSO approach. Furthermore, we attempted to investigate the 
whole evolutionary process of TVPSO in performing the parameter optimization and feature 
selection. 

3) The third experimental part had for objective to assess the capability of the proposed 
parallel TVPSO-FKNN model to enhance further the efficiency of the serial TVPSO-FKNN 
model with respect to the CPU time.  

4.3 Experimental Setup 
The proposed PTVPSO-FKNN model is implemented using Microsoft Visual C++ 6.0 and 

OpenMP. For SVM, LIBSVM implementation is utilized, which is originally developed by Chang 
and Lin [62]. Regarding ELM, the implementation by Zhu and Huang available from 
http://www3.ntu.edu.sg/home/egbhuang is used. We implement PSO, GA, FKNN and KNN from 
scratch. BPNN and PNN are developed by using the Neural Network Toolbox of Matlab 7.0. The 
computer is Intel Quad-Core Xeon 2.0 GHz CPU; 4 GB RAM and the system is Windows Server 
2003. 

The detail parameter setting for PTVPSO-FKNN is as follows. The number of the iterations and 
particles  are  set  to  250  and  8  for  the  Wieslaw  dataset,  200  and  5  for  the  Australian  dataset,  
respectively. The searching ranges for k and m are as follows: k∈[1, 100] and m∈[1, 10] for the 
Wieslaw dataset, k∈[1, 100] and m∈[1, 100] for the Australian dataset. vmax is set about 60% of 
the dynamic range of the variable on each dimension for the continuous type of dimensions. For 



the discrete type particle for feature selection, [-vmax, vmax] is set as [-6, 6]. As suggested in [52], c1i, 
c1f, c2i and c2f are set as follows: c1i =2.5, c1f =0.5, c2i =0.5, c2f =2.5. According to our preliminary 
experiment, wmax and wmin are set to 0.9 and 0.4, respectively.  

For GA, the solution is binary-encoded and the roulette wheel selection algorithm is used. The 
crossover probability and mutation probability are set to 0.8 and 0.05, respectively. To perform a 
fair comparison, the same computational effort is used in TVPSO and GA. That is, the maximum 
generation, population size and searching range of the parameters in GA are the same as those in 
TVPSO. For SVM, we consider the nonlinear SVM based on the popular Gaussian (RBF) kernel, 
and a grid-search technique [57] is employed using 10-fold CV to find out the optimal parameter 
values of RBF kernel function. The range of the related parameters C and γ are varied between C 
= {2-5,  2-3,…,215} and γ =  {2-15,2-13,…,21}. There will be 11 9 99´ = parameter combinations of 
( , )C g  are tried and the one with the best CV accuracy is chosen as the parameter values of the 
RBF kernel. Then the best parameter pair ( , )C g  is used to create the model for training. For 
KNN, we find the best value of k within the range [1,100] by using 10-fold CV. Concerning 
BPNN, we use the three layer back-propagation network. We try different settings of the number 
of nodes in the hidden layers (5, 10, 15, 20, 25 and 30) and the different learning epochs (50, 100, 
200 and 300) as the stopping criteria for training. In PNN, the pattern layer uses RBF neuron with 
spread parameter of 0.1 and 0.8 give the best accuracies by using the 10-fold CV on the Wieslaw 
dataset and Australian dataset, respectively. Hence these two values will be used for the 
subsequent analysis. In ELM the sigmoid activation function is used to compute the hidden layer 
output matrix. ELM models are built for 100 different numbers of neurons between 1 and 100. 
The best number of neurons will be taken to create the training model. 

4.4 Measure for Performance Evaluation 
Type I error, Type II error, total classification accuracy (ACC) and the area under the Receiver 

Operating Characteristic curve (AUC) [63] were used to test the performance of the proposed 
PTVPSO-FKNN model. They are the most widely used measures to assess the performance of 
bankruptcy prediction systems [25]. Before defining these measures, we introduced the concept of 
confusion matrix, which is presented in Table 2. Where TP is the number of true positives, which 
means that some cases with ‘positive’ class (with bankruptcy) is correctly classified as positive; 
FN, the number of false negatives, which means that some cases with the ‘positive’ class is 
classified as negative ; TN, the number of true negatives, which means that some cases with the 
‘negative’ class (with non-bankruptcy) is correctly classified as negative; and FP, the number of 
false positives, which means that some cases with the ‘negative’ class is classified as positive.  

 
<Insert Table 2 here> 

 
Type I and Type II errors are two important measures which describe how well the classifier 

discriminates between case with non-bankruptcy and with bankruptcy. Type I error measures the 
proportion of non-bankrupt cases which are incorrectly identified as bankrupt ones. It is defined as 
Type I error = FP / (FP + TN). Type II error measures the proportion of bankrupt cases which are 
incorrectly identified as non-bankrupt ones. It is defined as Type II error = FN / (TP + FN). The 
ACC is calculated by TP + TN / (TP + FP + FN + TN). The receiver operating characteristic (ROC) 
curve is a graphical display that gives the measure of the predictive accuracy of a logistic model. 



The curve displays the true positive rate and false positive rate. AUC is the area under the ROC 
curve, which is one of the best methods for comparing classifiers in two-class problems.  

5 Experimental Results and Discussion  

5.1 Experiment I: Classification in the Whole Original Feature Space 
As mentioned earlier, in this experiment we evaluated the effectiveness of the proposed model 

on the original feature space. In order to verify the effectiveness of the proposed model, 
TVPSO-FKNN was compared with five other reference classifiers (SVM, KNN, BPNN, PNN and 
ELM). Table 3 and Table 4 show the results achieved with all six investigated classifiers 
(PTVPSO-FKNN, SVM, KNN, BPNN, PNN and ELM) for the Wieslaw dataset and the 
Australian dataset respectively. It is well known that higher the AUC value the better the classifier 
is said to be. Accordingly, the classifiers are arranged in the descending order of AUC in the tables. 
As clearly indicated in Table 3, PTVPSO-FKNN outperforms all other methods with the AUC of 
81.69%,  except  the  Type  II  error  which  is  slightly  higher  than  that  of  PNN.  PNN  is  next  to  
PTVPSO-FKNN with the AUC of 79.89%, Type I error of 21.71%, Type II error of 18.52% and 
ACC of 79.58%, followed by BPNN, KNN, ELM and SVM. For the Australian dataset whose 
results are shown in Table 4, we can also observe that PTVPSO-FKNN performs best among all 
the available methods with the AUC of 87.07%, except the Type I error which is slightly higher 
than that of SVM. SVM is next to PTVPSO-FKNN with the AUC of 86.08%, Type I error of 
9.36%, Type II error of 18.47% and ACC of 85.80%, followed by ELM, KNN, BPNN and PNN. 
The results are interesting and exciting, which suggests that the FKNN approach can become a 
promising alternative bankruptcy prediction tool in financial decision-making, where SVM and 
ANN are known to be the best models [26].  

 
<Insert Table 3 here> 
<Insert Table 4 here> 

 
The better performance of the proposed model is owing to the fact that the TVPSO has aided 

the FKNN classifier to achieve the maximum classification performance by automatically 
detecting the optimal neighborhood size k and the fuzzy strength parameter m. The detailed 
results obtained by the proposed method via 10-fold CV are shown in Table 5 and Table 6 for the 
Wieslaw dataset and the Australian dataset respectively. As shown in the two tables, it can be 
observed that the values of k and m are different for each fold of the data. With the optimal 
combination of k and m, FKNN obtained different best classification performance in each fold in 
terms of the ACC, Type I error, Type II error and AUC. In addition, according to our preliminary 
experiment, k and m can be varied automatically when perform another run of 10-fold CV. The 
explanation lies in the fact that the two parameters are evolved together by the TVPSO algorithm 
according to the specific distribution of the training data at hand. It indicates that the optimal 
values of k and m can always be adaptively specified by TVPSO during each run.  

 
<Insert Table 5 here> 
<Insert Table 6 here> 

 



5.2 Experiment II: Classification with the PTVPSO-FKNN Model with Feature 
Selection 
As described earlier, the proposed PTVPSO-FKNN model aimed at enhancing the FKNN 
classification process by not only dealing with the parameters optimization but also automatically 
identifying the subset of the most discriminative features. In this experiment, we attempt to 
explore the capability of the PTVPSO-FKNN to further enhance the performance of the FKNN 
classifier by using the TVPSO. Table 7 and Table 8 list the results of PTVPSO-FKNN with and 
without feature selection for the Wieslaw dataset and the Australian dataset respectively. As shown 
in Table 7, results obtained on the Wieslaw dataset using PTVPSO-FKNN with feature selection 
significantly outperforms PTVPSO-FKNN without feature selection in terms of Type I error, Type 
II error, AUC and ACC at the statistical significance level of 0.05. On the Australian dataset, 
PTVPSO-FKNN with feature selection significantly outperforms PTVPSO-FKNN without feature 
selection  in  terms  of  Type  I  error,  AUC and  ACC at  the  statistical  significance  level  of  0.1.  By  
using feature selection, the ACC, AUC, Type I error and Type II error have been improved by 
2.5%, 2.55%, 1.71% and 3.38% on the Wieslaw dataset, and by 2.47%, 2.74%, 4.03% and 1.47% 
on the Australian dataset, respectively. For comparison purpose, we conducted the comparative 
study between TVPSO based and GA based FKNN on the two datasets as shown in Table 9 and 
Table 10. From Table 9, it can be seen that PTVPSO-FKNN outperforms GA-FKNN in terms of 
Type I error, AUC and ACC on the Wieslaw dataset, though the difference between them is not 
statistically significant. For the Australian dataset, PTVPSO-FKNN significantly outperforms 
GA-FKNN in terms of AUC and ACC at the significant level of 0.1, and achieves better 
performance in terms of Type I error and Type II error as shown in Table 10. From the tables, we 
can also find that PTVPSO-FKNN has achieved better performance with a smaller feature subset 
than GA-FKNN on both datasets under investigation. Moreover, during the evolving process, we 
also  observe  that  the  convergence  speed  of  TVPSO  is  faster  than  that  of  GA,  and  GA  is  more  
time-consuming than TVPSO as well. It reflects that TVPSO has stronger search ability than GA 
on the tested problems. In addition, it is interesting to see that the standard deviation for the 
acquired performance by the PTVPSO-FKNN is much smaller than that of GA-FKNN on both 
datasets, which indicates consistency and stability of the proposed model. 
 

<Insert Table 7 here> 
<Insert Table 8 here> 
<Insert Table 9 here> 
<Insert Table 10 here> 

 
To explore how many features and what features are selected during the PSO feature selection 

procedure, we attempted to further investigate the detail of the feature selection mechanism of the 
PSO algorithm. For simplicity, here we only took the Wieslaw dataset for example. The original 
numbers  of  features  of  the  dataset  is  30.  As  shown in  Table  11,  not  all  features  are  selected  for  
classification after the feature selection. Furthermore, feature selection has increased the 
classification accuracy, as demonstrated in Table 7 and Table 8. The average number of selected 
features by PTVPSO-FKNN is 15.3, and its most important features are C/CL(X1), C/TA(X2), 
CA/TA(X4), WC/TA(X5), S/I(X7), NP/TA(X9), S/R2(X16), S/CA(X18), S/TA2(X20), R/L(X23), 
L/TA(X25) and LTL/E(X27), which can be found in the frequency of the selected features of 



10-fold CV as shown in Fig. 4. Note that the important features (financial ratios) selected by the 
proposed model are indeed important from the knowledge perspective also as they are related to 
current liabilities and long term liabilities, current assets, shareholders’ equity and cash, sales, 
inventory, working capital, net profit, receivables, liabilities, total assets.    

 
<Insert Table 11 here> 
<Insert Fig.4 here> 
<Insert Fig.5 here> 

 
To observe the evolutionary process in PTVPSO-FKNN, Fig. 5 shows the evolution of the best 

fitness for fold 1# within 10-fold CV on the Wieslaw dataset. It should be noted that these results 
are calculated based on the global best positions, namely, the fitness of all the local best positions 
on the training set are calculated to obtain the best fitness of the population in each generation. 
The evolutionary processes are quite interesting. It can be observed that the fitness curves 
gradually improved from iteration 1 to 130 and exhibited no significant improvements after 
iteration 22, eventually stopped at the iteration 130 where the particles reached the stopping 
criterion (100 successively same gbest values). The fitness increase rapidly in the beginning of the 
evolution, after certain number of generations, it starts increasing slowly. During the latter part of 
the evolution, the fitness keeps stability until the stopping criterion is satisfied. This demonstrates 
that PTVPSO-FKNN can converge quickly toward the global optima, and fine tune the solutions 
very efficiently. The phenomenon illustrates the effectiveness of PTVPSO-FKNN in 
simultaneously evolving the parameters (k and m) and the features through using the TVPSO 
algorithm. 

5.3 Experiment III: Comparison between the Parallel TVPSO-FKNN Model and the 
Serial One 

In order to reduce further the running time of the serial TVPSO-FKNN model, we implemented 
the TVPSO-FKNN model in a parallel environment. To validate the efficiency of the parallel 
version, here we attempted to compare the performance of the PTVPSO-FKNN with that of 
TVPSO-FKNN. Table 12 reports the average results of Type I error, Type II error, AUC, ACC and 
computational time in seconds via 10-fold CV using two models on the two datasets. It can be 
seen that PTVPSO-FKNN and TVPSO-FKNN give almost the same results on both datasets, 
minor difference between the parallel model and the serial one is attributed to different partitions 
of the data are chosen when perform different folds within 10-fold CV. Thus, it verifies the 
correctness of the parallel design and implementation.  
 

<Insert Table 12 here> 
<Insert Fig.6 here> 

 
As shown in the Table 12, it can be seen that the average training time within the 10-fold CV for 

the TVPSO-FKNN was about 3.2 times that of the PTVPSO-FKNN on the Wieslaw dataset, while 
about 3.3 times that of PTVPSO-FKNN on the Australian dataset. Moreover, the average CPU 
time spent by the two methods within 10-fold CV has been presented in Fig.6. It can be observed 
that PTVPSO-FKNN cost much fewer CPU time than TVPSO-FKNN on each fold of the dataset. 



It indicates that the TVPSO-FKNN has benefited a great deal from the parallel implementation 
with respect to the computational time. It is worth noticing that here only a quad-core processor is 
used in this experiment, thus the computational time will be further reduced with increase of the 
cores.  

6 Conclusions and Future work 
This study provides a novel model for bankruptcy prediction. The main novelty of this model is 

in the proposed TVPSO-based approach, which aims at aiding the FKNN classifier to achieve the 
maximum classification performance. On the one hand, the continuous TVPSO is employed to 
adaptively specify the two important parameters k and m of  the  FKNN  classifier.  On  the  other  
hand, the binary TVPSO is adopted to identify the most discriminative features. Moreover, both 
the continuous and binary TVPSO are implemented in a parallel environment to reduce further the 
computational time. The experimental results demonstrate that the developed model performs 
significantly better than the other five state-of-the-art classifiers (KNN, SVM, BPNN, PNN and 
ELM) in financial application field in terms of Type I error, Type II error, ACC and AUC on two 
real-life cases. In addition, the experiment reveals that the PTVPSO-FKNN is also a powerful 
feature selection tool which has detected a subset of best discriminative financial ratios that are 
really important from the knowledge perspective. Last but not least, the proposed model computes 
rather efficiently owing to the high performance computing technology. 

Hence, it can be safely concluded that, the developed PTVPSO-FKNN model can serve as a 
promising alternative early warning system in financial decision-making. Meanwhile, we should 
note that the proposed model does perform efficiently on the data at hand; however, it is not 
obvious that the parallel algorithm will lead to significant improvement when applying to the 
financial data with larger instances. Future investigation will pay much attention to evaluating the 
proposed model in the larger datasets.  
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