
A novel bankruptcy prediction model based on an adaptive fuzzy
k-nearest neighbor method

Hui-Ling Chena,b Bo Yanga,b Gang Wanga,b Jie Liua,b Xin Xua,b Su-Jing Wanga,b
Da-You Liua,b

*

a(College of Computer Science and Technology, Jilin University, Changchun 130012, China)
b(Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of
Education, Jilin University, Changchun 130012, China)

Abstract:
Bankruptcy prediction is one of the most important issues in financial decision-making.
Constructing effective corporate bankruptcy prediction models in time is essential to make
companies or banks prevent from bankruptcy. This study proposes a novel bankruptcy prediction
model based on an adaptive fuzzy k-nearest neighbor (FKNN) method, where the neighborhood
size k and the fuzzy strength parameter m are adaptively specified by the continuous particle
swarm optimization (PSO) approach. In addition to performing the parameter optimization for
FKNN, PSO is also utilized to choose the most discriminative subset of features for prediction.
Adaptive control parameters including time-varying acceleration coefficients (TVAC) and
time-varying inertia weight (TVIW) are employed to efficiently control the local and global search
ability of PSO algorithm. Moreover, both the continuous and binary PSO are implemented in
parallel on a multi-core platform. The proposed bankruptcy prediction model, named
PTVPSO-FKNN, is compared with five other state-of-the-art classifiers on two real-life cases. The
obtained results clearly confirm the superiority of the proposed model in terms of classification
accuracy, Type I error, Type II error and area under the receiver operating characteristic curve
(AUC) criterion. The proposed model also demonstrates its ability to identify the most
discriminative financial ratios. Additionally, the proposed model has reduced a large amount of
computational time owing to its parallel implementation. Promisingly, PTVPSO-FKNN might
serve as a new candidate of powerful early warning systems for bankruptcy prediction with
excellent performance.

Keywords: Fuzzy k-nearest neighbor; Parallel computing; Particle swarm optimization; Feature
selection; Bankruptcy prediction

1. Introduction
Accurately identifying the potentially financial failure of companies remains a goal of many

stakeholders involved. Because there is no underlying economic theory of bankruptcy, searching
for more accurate bankruptcy prediction models remains the goal in the field of the bankruptcy
prediction. As a matter of fact, bankruptcy prediction can be formulated as the problem of solving
classification task. A fair amount of classification models has been developed for bankruptcy
prediction. These models have progressed from statistical methods to the artificial intelligence (AI)

* Corresponding author (Da-You Liu) (liudy@jlu.edu.cn;liudayou19420601@gmail.com)

*Manuscript
Click here to view linked References

http://ees.elsevier.com/knosys/viewRCResults.aspx?pdf=1&docID=1911&rev=2&fileID=36250&msid={1419BD58-6807-4540-921D-0C6F7FC1573D}

approaches. A number of statistical methods such as the simple univariate analysis [1],
multivariate discriminant analysis technique [2], logistic regression approach [3] and factor
analysis technique [4] have been typically used for financial applications including bankruptcy
prediction. Recent studies in the AI approach, such as artificial neural networks (ANN)
[5][6][7][8][9][10][11], rough set theory [12][13][14], support vector machines (SVM)
[15][16][17], k-nearest neighbor method (KNN) [18][19][20], Bayesian network models [21][22]
and other different methods such as hybrid methods and ensemble methods [23][24][25][26] have
also been successfully applied to bankruptcy prediction (see [25][26] for detail). Among these
techniques, ANN has become one of the most popular techniques for the prediction of corporate
bankruptcy due to its high prediction accuracy. However, a major disadvantage of ANN lies in
their knowledge representation. The black box nature of ANN makes it difficult for humans to
understand how the networks predict the bankruptcy.

Compared with ANN, KNN is simple, easily interpretable and can achieve acceptable accuracy
rate. Albeit these advantages, the standard KNN methods place equal weights on all the selected
neighbors regardless of their distances from the query point. An improvement over the standard
KNN classifier is the Fuzzy k-nearest neighbor classifier (FKNN) [27], which uses concepts from
fuzzy logic to assign degree of membership to different classes while considering the distance of
its k-nearest neighbors. It means that all the instances are assigned a membership value in each
class rather than binary decision of ‘bankruptcy’ or ‘non-bankruptcy’. Points closer to the query
point contributes larger value to be assigned to the membership function of their corresponding
class in comparison to far away neighbors. Class with the highest membership function value is
taken as the winner. The FKNN method has been frequently used for the classification of
biological data [28][29][30], image data [31][32] and so on. Nevertheless, only few works have
paid attention to using FKNN to dealing with the financial problems. Bian et al. [33] used FKNN
as a reference classifier in their experiments in order to show the superiority of the proposed
Fuzzy-rough KNN method, which incorporated the rough set theory into FKNN to further
improve the accuracy of bankruptcy prediction. However, they did not comprehensively
investigate the neighborhood size k and the fuzzy strength parameter m, which play a significant
role in improving the prediction result. This work will explore the full potential of FKNN by
automatically determining k and m to exploit the maximum classification accuracy for bankruptcy
prediction.
 Besides choosing a good learning algorithm, feature selection is also an important issue in
building the bankruptcy prediction models [25][34][35][36][37], which refers to choosing subset
of attributes from the set of original attributes. The purpose of the feature selection is to identify
the significant features and build a good learning model. The benefits of feature selection are
threefold: improving the prediction performance of the predictors, providing faster and more
cost-effective predictors, and providing a better understanding of the underlying process that
generated the data [38]. In bankruptcy prediction, genetic algorithms (GA) is usually used to select
a subset of input features [39][40][41], to find appropriate hyper-parameter values of a predictor
(for example, the kernel width and the regularization constant in the case of SVM) [35][42][43],
or to determine predictor parameters (for example, Multilayer perceptron weights) [44][45].
Compared with GA, PSO algorithm [46] has no crossover and mutation operators, it is simple and
computationally inexpensive both in memory and runtime. Additionally, every particle adjusts
their velocity and position according to the local best and global best. So that all the particles have

a powerful search capability, which can help the swarm find the optimal solution. As for GA, after
finding a locally optimum, it is difficult for it to find out a much better one even with a random
search strategy in terms of mutation operator especially within a reasonable searching time. In this
work, we will focus on exploring the PSO-based parameter optimization and feature selection
approach. The continuous PSO algorithm will be employed to evolve an adaptive FKNN, where
the neighborhood size k and the fuzzy strength parameter m are adaptively specified. On the other
hand, the binary PSO will be used as a feature selection vehicle to identify the most informative
features as well.
 When dealing with the practical problems, the evolutionary-based methods such as the PSO and
GA will cost a lot of computational time. There is an urgent need to improve the performance
using high-performance computing techniques. For this reason, it is one of the major purposes of
this paper to use a parallel environment to speed up the search and optimization process. Both the
continuous and binary PSO are implemented on a multi-core platform using OpenMP (Open
Multi-Processing) which is a portable, scalable model that gives programmers a simple and
flexible interface for developing parallel applications for platforms [47]. The efficiency and
effectiveness of the proposed bankruptcy prediction model is validated by comparing with other
five state-of-the-art classification methods on two real-life cases. The experimental results
demonstrate that the proposed model can not only obtain the most appropriate parameters but also
show high discriminating power as a feature selection tool. Further comparison is also made
between the parallel model and serial one. Based on the experiments conducted, it is inferred that
the parallel model PTVPSO-FKNN can significantly reduce the computational time.

The rest of the paper is organized as follows. In Section 2, we give a brief description of FKNN
method and PSO algorithm. Section 3 proposes our model, the simultaneous optimization of
relevant parameters and feature subset by the PSO approach in a parallel environment. In the next
section, the detailed experimental design is presented, and Section 5 describes all the empirical
results and discussion. Finally, Conclusions and future work are summarized in Section 6.

2. Background Materials

2.1 Fuzzy k-Nearest Neighbor Algorithm
The k-nearest neighbor algorithm (KNN) is one of the oldest and simplest non-parametric

pattern classification methods. In the KNN algorithm a class is assigned according to the most
common class amongst its k-nearest neighbors. In 1985, Keller proposed a fuzzy version of KNN
by incorporating the fuzzy set theory into the KNN algorithm, and named it as “fuzzy KNN
classifier algorithm” (FKNN) [27]. According to his approach, rather than individual classes as in
KNN, the fuzzy memberships of samples are assigned to different categories according to the
following formulation:

2/(1)

1

2/(1)

1

(1 || ||)
()

(1 || ||)

k
m

ij j
j

i k
m

j
j

u x x
u x

x x

-

=

-

=

-
=

-

å

å
 (1)

where i=1,2,…C, and j=1,2,…,k, with C number of classes and k number of nearest neighbors.
The fuzzy strength parameter m is used to determine how heavily the distance is weighted when
calculating each neighbor’s contribution to the membership value, and its value is usually chosen

http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6V30-4X8M54Y-1&_mathId=mml25&_user=1021782&_cdi=5716&_pii=S0378779609001977&_rdoc=1&_issn=03787796&_acct=C000050479&_version=1&_userid=1021782&md5=2781954a5ceb12a1998a6c33851f08f3
http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6V30-4X8M54Y-1&_mathId=mml26&_user=1021782&_cdi=5716&_pii=S0378779609001977&_rdoc=1&_issn=03787796&_acct=C000050479&_version=1&_userid=1021782&md5=5fc5a3f5b8efb0d4e6119b1f962c13c2

as (1,)mÎ ¥ . ||x - xj|| is the distance between x and its jth nearest neighbor xj. Various metrics can
be chosen for ||x - xj||, such as Euclidean distance, Hamming distance, and Mahalanobis distance,
among other distances. In this study, the Euclidean metric is used. uij is the membership degree of
the pattern xj from the training set to the class i, among the k nearest neighbors of x. There are two
ways [27] to define uij, one way is the crisp membership, i.e., each training pattern has complete
membership in their known class and non-memberships in all other classes. The other way is the
constrained fuzzy membership, i.e., the k nearest neighbors of each training pattern (say xk) are
found, and the membership of xk in each class is assigned as:

0.51 ()*0.49, if
()*0.49, if .() j

j
ij k

n K j i
n K j iu x ì

í
î

+ =
¹= (2)

The value nj is the number of neighbors found which belong to the jth class. Note that, the
memberships calculated by Eq. (2) should satisfy the following equations:

1
1, 1,2, , ,

C

ij
I

j nm
=

= =å L (3)

1
0 ,

n

ij
j

u n
=

< <å (4)

[0,1].iju Î (5)

In our experiments, we have found that the second way leads to better classification accuracy.
After calculating all the memberships for a query sample, it is assigned to the class with which it
has the highest membership value, i.e.,

1
() argmax(())

C

i
i

C x u x
=

= (6)

The pseudo-code of the FKNN algorithm is given below:

 Input: (a) The training set X with the labeled patterns { | 1,2, , }ix i n= K .
 (b) The test pattern y.
Output: (a) Class label of y.

 (b) Confidence for each class label.
ALGORITHM:
For i = 1, 2, … , to n

 Compute the distance from xi to y using the Euclidean metric.
 If i ≤ k
 Include xi in the set of k nearest neighbors.
 Else if (xi is closer to y than any previous nearest neighbors)
 Delete the farthest of the k nearest neighbors.

Include xi in the set of k nearest neighbors.
End if

End for
For c = 1 to C
Compute ui(x) using (1).
End for
Crisp class label of y is assigned to the class with which it has the highest membership value

using (6).

2.2 Time Variant Particle Swarm Optimization (TVPSO)
PSO is inspired by the social behavior of organisms such as bird flocking and fish schooling,

which was first developed by Kennedy and Eberhart [46][48]. In PSO each individual is treated as
a particle in d-dimensional space, and each particle has a position and velocity. The position vector
of the ith particle is represented as Xi = (xi,1,xi,2,…,xi,d), and its according velocity is represented as
Vi = (vi,1,vi,2,…,vi,d). The velocity and position are updated as follows:

1
, , 1 1 , , 2 2 , ,() ()n n n n n n

i j i j i j i j g j i jv w v c r p x c r p x+ = ´ + ´ - + ´ - (7)

1 1
, , , , 1,2, ,n n n

i j i j i jx x v j d+ += + = L (8)

where Vector Pi = (pi,1, pi,2,…, pi,d) represents the best previous position of the ith particle that
gives the best fitness value, which is known as the personal best position (pbest). Vector Pg = (pg,1,
pg,2, …, pg,d) is the best particle among all the particles in the population, which is known as the
global best position (gbest). r1 and r2 are random numbers, generated uniformly in the range [0, 1].
The velocity vi,j is restricted to the range [-vmax, vmax], in order to prevent the particles from
flying out of the solution space. Generally, maxv is suggested to set to be 10-20% of the dynamic
range of the variable in each dimension [49].

Inertia weight w, introduced by Shi and Eberhart, which is used to balance the global
exploration and local exploitation [50]. A large inertia weight facilitates the global search, while a
small inertia weight facilitates the local search. In order to reduce the weight over the iterations
allowing the algorithm to exploit some specific areas, the inertia weight w is updated according to
the following equation:

max
min max min

max

()
()

t t
w w w w

t
-

= + - (9)

where maxw , minw are the predefined maximum and minimum values of the inertia weight w, t is
the current iteration of the algorithm and maxt is the maximum number of iterations. Usually the
value of w is varied between 0.9 and 0.4. Eq. (9) is also known as time-varying inertia weight
(TVIW), which will be incorporated into the TVPSO. It has been shown to significantly improve
the performance of PSO [51], since it makes PSO have more global search ability at the beginning
of the run and have more local search ability near the end of the run. 1c and 2c are acceleration
coefficients, which define the magnitude of the influences on the particles velocity in the
directions of the personal and the global optima, respectively. To better balance the search space
between the global exploration and local exploitation, time-varying acceleration coefficients
(TVAC) have been introduced in [52]. This concept will be adopted in this study to ensure the
better search for the solutions. The core idea of TVAC is that 1c decreases from its initial value

of 1ic to 1 fc , while 2c increases from 2ic to 2 fc using the following equations as in [52].

TVAC can be mathematically represented as follows:

1 1 1 1
max

()f i i
tc c c c

t
= - + , (10)

2 2 2 2
max

()f i i
tc c c c

t
= - + . (11)

where 1 fc , 1ic , 2 fc and 2ic are constants, t is the current iteration of the algorithm and maxt is

the maximum number of iterations.
 For the binary PSO, the discrete PSO version introduced by Kennedy and Eberhart [53] was
adopted in this study. The binary PSO is searching in a discrete space (i.e., searching in a space
where ‘0’ presents the feature is selected ‘1’ denotes the feature is discarded). Where a particle
moves in a state space restricted to zero and one on each dimension, in terms of the changes in
probabilities that a bit will be in one state or the other. If the velocity is high it is more likely to
choose ‘1’, and lower values favor choosing ‘0’. A sigmoid function is applied to transform the
velocity from continuous space to probability space:

,
,

1() ,
1 exp()

1,2, ,i j
i j

sig j
v

dv = =
+ -

L (12)

The velocity update Eq. (7) keeps unchanged except that , ,,i j i jx p and ,g jp Î {0,1} , and in order

to ensure that bit can transfer between ‘1’ and ‘0’ with a positive probability, maxv was introduced

to limit ,i jv . The new particle position is updated using the following rule:

,1
,

,

1, ()
, 1, 2, ,

0, ()
i jn

i j
i j

if rnd sig v
x j d

if rnd sig v
+

<ìï= =í ³ïî
L (13)

where ,()i jsig v is calculated according to Eq. (12), rnd is a uniform random number in the

range [0, 1].
 As described above, TVPSO is adaptive in nature by allowing its inertia weight and
acceleration coefficients to vary with iterations during its search in the continuous and discrete
space. This character helps the algorithm explore the search space to a greater extent.

3. Proposed PTVPSO-FKNN Prediction Model
In this section, we describe the proposed PTVPSO-FKNN model for bankruptcy prediction. As

mentioned in the Introduction, the aim of this model is to optimize the FKNN classifier by
automatically: 1) determining the number of nearest neighbors k and the fuzzy strength
parameter m and 2) identifying the subset of best discriminative features. In order to achieve this
goal, the continuous and binary PSO are combined together to dynamically conduct parameter
optimization and feature selection simultaneously. The obtained appropriate feature subset is
served as the input into the optimized FKNN model for classification. PTVPSO-FKNN takes into
consideration two fitness values for parameter optimization and feature selection. One is the
AUC value and the other is the number of selected features by TVPSO. Here, we first describe
the model based on the serial PSO algorithm, termed TVPSO-FKNN, and then implement it in
parallel.

3.1 TVPSO-FKNN Model based on the Serial PSO Algorithm
The flowchart of the TVPSO-FKNN model for bankruptcy prediction was constructed through the

following main steps as shown in Fig. 1.
Step 1: Encode the particle with n+2 dimensions. The first two dimensions are k and m which are

continuous values. The remaining n dimensions is Boolean features mask, which is
represented by discrete value, ‘1’ indicates the feature is selected, and ‘0’ represents the
feature is discarded.

Step 2: Initialize the individuals of the population with random numbers. Meanwhile, specify the
PSO parameters including the lower and upper bounds of the velocity, the size of
particles, the number of iterations, etc.

Step 3: Train the FKNN model with the selected features.
Step 4: It is well known that higher the AUC value the better the classifier is said to be. The

particle with high AUC value and the small number of selected features can produce a
high fitness value. Hence, we took both of them into consideration in designing the
objective function, the fitness value was calculated according to the following objective
function:

1

1
2

1 2

AUC

(1)
n

ij

f

ft
f

n

f f fa b

=

=ì
ï
ïï
í = -

= ´ +ï ´

ï
ï
î

å

 (14)

where variable AUC in the first sub-objective function f1 represents the area under the
ROC curve achieved by the FKNN classifier via K-fold cross-validation (CV), here K=5.
Note that here the 5-fold CV is used to determine the optimal parameters (including k and
m) which is different from the outer loop of 10-fold CV, which is used to do the
performance estimation. In the second sub-objective function f2, fti is the value of feature
mask (‘1’ represents that feature is selected and ‘0’ indicates that feature is discarded), n is
the total number of features. The weighted summation of the two sub-objective functions is
selected as the final objective function. In the function f, α is the weight for FKNN
classification accuracy, β indicates the weight for the selected features. The weight can be
adjusted to a proper value depends on the importance of the sub-objective function.
Because the classification performance more depend on the classification accuracy, hence
the α value is set as much bigger than that of β. According to our preliminary experiments,
the value of α and β were taken as 0.85 and 0.15 respectively. After the fitness value was
obtained, the global optimal fitness was saved as gfit, personal optimal fitness as pfit,
global optimal particle as gbest and personal optimal particle as pbest.

Step 5: Increase the number of iteration.
Step 6: Increase the number of population. Update the position and velocity of k, m using Eqs.(7-8)

and the features using Eq.(7), Eqs.(12-13) in each particle.
Step 7: Train the FKNN classifier with the feature vector obtained in Step 6 and calculate the

fitness value of each particle according to Eq. (14). Notice that PSO is used for
optimization tasks where the neighborhood size k to be optimized is integer number.
Hence, an extra step is taken to round the encoded value k to the nearest integer number
before the particle is evaluated.

Step 8: Update the personal optimal fitness (pfit) and personal optimal position (pbest) by

comparing the current fitness value with the pfit stored in the memory. If the current
fitness is dominated by the pfit stored in the memory, then keep the pfit and pbest in the
memory; otherwise, replace the pfit and pbest in the memory with the current fitness
value and particle position.

Step 9: If the size of the population is reached, then go to Step 10. Otherwise, go to Step 6.
Step 10: Update the global optimal fitness (gfit) and global optimal particle (gbest) by comparing

the gfit with the optimal pfit from the whole population, If the current optimal pfit is
dominated by the gfit stored in the memory, then keep the gfit and gbest in the memory;
otherwise, replace the gfit and gbest in the memory with the current optimal pfit and the
optimal pbest from the whole population.

Step 11: If the stopping criteria are satisfied, then go to Step 12. Otherwise, go to Step 5. The
termination criteria are that the iteration number reaches the maximum number of
iterations or the value of gfit does not improve after 100 consecutive iterations.

Step 12: Get the optimal (k, m) and feature subset from the best particle (gbest).

<Insert Fig.1 here>

3.2 Parallel Implementation of the TVPSO-FKNN (PTVPSO-FKNN)
When dealing with the practical problems, the evolutionary-based methods such as PSO and

GA will cost a lot of computational time. There is an urgent need to improve the performance
using high-performance computing techniques. Consequently, we attempt to implement
TVPSO-FKNN in parallel on multi-core processor by using OpenMP to speed up the search and
optimization process.

The architecture of the multi-core platform is divided into three lays as shown in Fig. 2: 1)
TVPSO-FKNN: It consists of a number of particles, which can supply computing requirements.
The parallel algorithm controls the iterations of particles and each particle is calculated separately.
2) OpenMP: This component guarantees to implement parallel synchronization and establish the
communications with operating system (OS). The main part of OpenMP is scheduler, which
provides the system with job scheduling and allocation. 3) Multi-core processor: The job is
dispatched by OpenMP via OS.

<Insert Fig.2 here>

The pseudo-code of the parallel PTVPSO-FKNN is as follows:

Initialize system parameters.
Train FKNN model.
Calculate fitness.
While (cni < mni) /*current number of iteration (cni), maximum number of iteration (mni).*/
 For each particle
 Update position.
 Update velocity.

 Train FKNN model.
 Calculate fitness.
 Calculate pfit . /* personal optimal fitness (pfit)*/
 Calculate pbest . /* personal optimal position (pbest)*/
 End for
 Calculate gfit. /*global optimal fitness (gfit)*/
 Calculate gbest. /*global optimal particle (gbest)*/
 cni = cni + 1.
End while

4 Experimental Design

4.1 Data Description
The first financial data used for this study is the Wieslaw [54] dataset which contains 30

financial ratios and 240 cases in total (112 from bankrupt Polish companies and 128 from
non-bankrupt ones between 1997 and 2001). All the observations cover the period spanning 2 to 5
years before bankruptcy toke place. It should be noted that the size of the dataset is not that large
compared to the majority of bankruptcy prediction studies. However, according to [55], the dataset
is reliable since increasing the dataset length does not lead to the accuracy increase. The
description of the 30 financial ratios is shown in Table 1. Fig. 3 illustrates the distribution of the
two classes of 240 samples in the subspace formed by the two best features according to the
principal component analysis algorithm [56]. As shown in this figure, there is apparently strong
overlap between the bankrupt companies and non-bankrupt ones.

<Insert Fig.3 here>
<Insert Table 1 here>

The second dataset is the Australian credit dataset, is available from the UCI Repository of

Machine Learning Databases. The Australian credit data consists of 307 instances of creditworthy
applicants and 383 instances where credit is not creditworthy. Each instance contains 6 nominal, 8
numeric attributes, and 1 class attribute (accepted or rejected). This dataset is interesting because
there is a good mixture of attributes: continuous, nominal with small numbers of values, and
nominal with larger numbers of values. There are also a few missing values. To protect the
confidentiality of data, the attributes names and values have been changed to meaningless
symbolic data.

Normalization is employed to avoid feature values in greater numerical ranges dominating
those in smaller numerical ranges, as well as to avoid the numerical difficulties during the
calculation [57]. Generally, the data could be normalized by scaling them into the interval of [0, 1]
or [-1, 1], here we chose the range of [-1, 1] according to the Eq. (15), where x is the original value,
x¢ is the scaled value, amax is the maximum value of feature a, and amin is the minimum value
of feature a.

()*2 1a

a a

x - minx
max - min

¢ = - (15)

In order to gain an unbiased estimate of the generalization accuracy, the k-fold CV presented by
Salzberg [58] was used to evaluate the classification accuracy. This study set k as 10, i.e., the data
was divided into ten subsets. Each time, one of the 10 subsets is used as the test set and the other 9
subsets are put together to form a training set. Then the average error across all 10 trials is
computed. The advantage of this method is that all of the test sets are independent and the
reliability of the results could be improved. And we attempted to design our experiment using two
loops. The inner loop is used to determine the optimal parameters and best feature subset for the
FKNN classifier. The outer loop is used for estimating the performance of the FKNN classifier. In
order to keep the same proportion of bankrupt and non-bankrupt companies of each set as that of
the entire dataset, here a stratified 10-fold CV is employed as the outer loop and a stratified 9-fold
CV is used for the inner loop. It is also referred to as the nested stratified 10-fold CV, which is also
used in [59] for the microarray gene data analysis.

4.2 Experimental Scheme
The proposed experimental framework was articulated around the following three main

experiments.
1) The first experiment aimed at assessing the effectiveness of the FKNN approach in

bankruptcy prediction in the whole original feature space. For comparison purpose, we
implemented five other reference classification approaches, namely KNN, SVM [60], back
propagation neural network (BPNN), the probabilistic neural network (PNN) and extreme learning
machine (ELM) [61]. In addition, we have implemented GA based FKNN (GA-FKNN) for
comparison purpose.

2) In the second experiment, it was plan to assess the capability of the proposed
PTVPSO-FKNN model with feature selection to boost further the performance of the FKNN
classifier by using the time-varying PSO approach. Furthermore, we attempted to investigate the
whole evolutionary process of TVPSO in performing the parameter optimization and feature
selection.

3) The third experimental part had for objective to assess the capability of the proposed
parallel TVPSO-FKNN model to enhance further the efficiency of the serial TVPSO-FKNN
model with respect to the CPU time.

4.3 Experimental Setup
The proposed PTVPSO-FKNN model is implemented using Microsoft Visual C++ 6.0 and

OpenMP. For SVM, LIBSVM implementation is utilized, which is originally developed by Chang
and Lin [62]. Regarding ELM, the implementation by Zhu and Huang available from
http://www3.ntu.edu.sg/home/egbhuang is used. We implement PSO, GA, FKNN and KNN from
scratch. BPNN and PNN are developed by using the Neural Network Toolbox of Matlab 7.0. The
computer is Intel Quad-Core Xeon 2.0 GHz CPU; 4 GB RAM and the system is Windows Server
2003.

The detail parameter setting for PTVPSO-FKNN is as follows. The number of the iterations and
particles are set to 250 and 8 for the Wieslaw dataset, 200 and 5 for the Australian dataset,
respectively. The searching ranges for k and m are as follows: k∈[1, 100] and m∈[1, 10] for the
Wieslaw dataset, k∈[1, 100] and m∈[1, 100] for the Australian dataset. vmax is set about 60% of
the dynamic range of the variable on each dimension for the continuous type of dimensions. For

the discrete type particle for feature selection, [-vmax, vmax] is set as [-6, 6]. As suggested in [52], c1i,
c1f, c2i and c2f are set as follows: c1i =2.5, c1f =0.5, c2i =0.5, c2f =2.5. According to our preliminary
experiment, wmax and wmin are set to 0.9 and 0.4, respectively.

For GA, the solution is binary-encoded and the roulette wheel selection algorithm is used. The
crossover probability and mutation probability are set to 0.8 and 0.05, respectively. To perform a
fair comparison, the same computational effort is used in TVPSO and GA. That is, the maximum
generation, population size and searching range of the parameters in GA are the same as those in
TVPSO. For SVM, we consider the nonlinear SVM based on the popular Gaussian (RBF) kernel,
and a grid-search technique [57] is employed using 10-fold CV to find out the optimal parameter
values of RBF kernel function. The range of the related parameters C and γ are varied between C
= {2-5, 2-3,…,215} and γ = {2-15,2-13,…,21}. There will be 11 9 99´ = parameter combinations of
(,)C g are tried and the one with the best CV accuracy is chosen as the parameter values of the
RBF kernel. Then the best parameter pair (,)C g is used to create the model for training. For
KNN, we find the best value of k within the range [1,100] by using 10-fold CV. Concerning
BPNN, we use the three layer back-propagation network. We try different settings of the number
of nodes in the hidden layers (5, 10, 15, 20, 25 and 30) and the different learning epochs (50, 100,
200 and 300) as the stopping criteria for training. In PNN, the pattern layer uses RBF neuron with
spread parameter of 0.1 and 0.8 give the best accuracies by using the 10-fold CV on the Wieslaw
dataset and Australian dataset, respectively. Hence these two values will be used for the
subsequent analysis. In ELM the sigmoid activation function is used to compute the hidden layer
output matrix. ELM models are built for 100 different numbers of neurons between 1 and 100.
The best number of neurons will be taken to create the training model.

4.4 Measure for Performance Evaluation
Type I error, Type II error, total classification accuracy (ACC) and the area under the Receiver

Operating Characteristic curve (AUC) [63] were used to test the performance of the proposed
PTVPSO-FKNN model. They are the most widely used measures to assess the performance of
bankruptcy prediction systems [25]. Before defining these measures, we introduced the concept of
confusion matrix, which is presented in Table 2. Where TP is the number of true positives, which
means that some cases with ‘positive’ class (with bankruptcy) is correctly classified as positive;
FN, the number of false negatives, which means that some cases with the ‘positive’ class is
classified as negative ; TN, the number of true negatives, which means that some cases with the
‘negative’ class (with non-bankruptcy) is correctly classified as negative; and FP, the number of
false positives, which means that some cases with the ‘negative’ class is classified as positive.

<Insert Table 2 here>

Type I and Type II errors are two important measures which describe how well the classifier

discriminates between case with non-bankruptcy and with bankruptcy. Type I error measures the
proportion of non-bankrupt cases which are incorrectly identified as bankrupt ones. It is defined as
Type I error = FP / (FP + TN). Type II error measures the proportion of bankrupt cases which are
incorrectly identified as non-bankrupt ones. It is defined as Type II error = FN / (TP + FN). The
ACC is calculated by TP + TN / (TP + FP + FN + TN). The receiver operating characteristic (ROC)
curve is a graphical display that gives the measure of the predictive accuracy of a logistic model.

The curve displays the true positive rate and false positive rate. AUC is the area under the ROC
curve, which is one of the best methods for comparing classifiers in two-class problems.

5 Experimental Results and Discussion

5.1 Experiment I: Classification in the Whole Original Feature Space
As mentioned earlier, in this experiment we evaluated the effectiveness of the proposed model

on the original feature space. In order to verify the effectiveness of the proposed model,
TVPSO-FKNN was compared with five other reference classifiers (SVM, KNN, BPNN, PNN and
ELM). Table 3 and Table 4 show the results achieved with all six investigated classifiers
(PTVPSO-FKNN, SVM, KNN, BPNN, PNN and ELM) for the Wieslaw dataset and the
Australian dataset respectively. It is well known that higher the AUC value the better the classifier
is said to be. Accordingly, the classifiers are arranged in the descending order of AUC in the tables.
As clearly indicated in Table 3, PTVPSO-FKNN outperforms all other methods with the AUC of
81.69%, except the Type II error which is slightly higher than that of PNN. PNN is next to
PTVPSO-FKNN with the AUC of 79.89%, Type I error of 21.71%, Type II error of 18.52% and
ACC of 79.58%, followed by BPNN, KNN, ELM and SVM. For the Australian dataset whose
results are shown in Table 4, we can also observe that PTVPSO-FKNN performs best among all
the available methods with the AUC of 87.07%, except the Type I error which is slightly higher
than that of SVM. SVM is next to PTVPSO-FKNN with the AUC of 86.08%, Type I error of
9.36%, Type II error of 18.47% and ACC of 85.80%, followed by ELM, KNN, BPNN and PNN.
The results are interesting and exciting, which suggests that the FKNN approach can become a
promising alternative bankruptcy prediction tool in financial decision-making, where SVM and
ANN are known to be the best models [26].

<Insert Table 3 here>
<Insert Table 4 here>

The better performance of the proposed model is owing to the fact that the TVPSO has aided

the FKNN classifier to achieve the maximum classification performance by automatically
detecting the optimal neighborhood size k and the fuzzy strength parameter m. The detailed
results obtained by the proposed method via 10-fold CV are shown in Table 5 and Table 6 for the
Wieslaw dataset and the Australian dataset respectively. As shown in the two tables, it can be
observed that the values of k and m are different for each fold of the data. With the optimal
combination of k and m, FKNN obtained different best classification performance in each fold in
terms of the ACC, Type I error, Type II error and AUC. In addition, according to our preliminary
experiment, k and m can be varied automatically when perform another run of 10-fold CV. The
explanation lies in the fact that the two parameters are evolved together by the TVPSO algorithm
according to the specific distribution of the training data at hand. It indicates that the optimal
values of k and m can always be adaptively specified by TVPSO during each run.

<Insert Table 5 here>
<Insert Table 6 here>

5.2 Experiment II: Classification with the PTVPSO-FKNN Model with Feature
Selection
As described earlier, the proposed PTVPSO-FKNN model aimed at enhancing the FKNN
classification process by not only dealing with the parameters optimization but also automatically
identifying the subset of the most discriminative features. In this experiment, we attempt to
explore the capability of the PTVPSO-FKNN to further enhance the performance of the FKNN
classifier by using the TVPSO. Table 7 and Table 8 list the results of PTVPSO-FKNN with and
without feature selection for the Wieslaw dataset and the Australian dataset respectively. As shown
in Table 7, results obtained on the Wieslaw dataset using PTVPSO-FKNN with feature selection
significantly outperforms PTVPSO-FKNN without feature selection in terms of Type I error, Type
II error, AUC and ACC at the statistical significance level of 0.05. On the Australian dataset,
PTVPSO-FKNN with feature selection significantly outperforms PTVPSO-FKNN without feature
selection in terms of Type I error, AUC and ACC at the statistical significance level of 0.1. By
using feature selection, the ACC, AUC, Type I error and Type II error have been improved by
2.5%, 2.55%, 1.71% and 3.38% on the Wieslaw dataset, and by 2.47%, 2.74%, 4.03% and 1.47%
on the Australian dataset, respectively. For comparison purpose, we conducted the comparative
study between TVPSO based and GA based FKNN on the two datasets as shown in Table 9 and
Table 10. From Table 9, it can be seen that PTVPSO-FKNN outperforms GA-FKNN in terms of
Type I error, AUC and ACC on the Wieslaw dataset, though the difference between them is not
statistically significant. For the Australian dataset, PTVPSO-FKNN significantly outperforms
GA-FKNN in terms of AUC and ACC at the significant level of 0.1, and achieves better
performance in terms of Type I error and Type II error as shown in Table 10. From the tables, we
can also find that PTVPSO-FKNN has achieved better performance with a smaller feature subset
than GA-FKNN on both datasets under investigation. Moreover, during the evolving process, we
also observe that the convergence speed of TVPSO is faster than that of GA, and GA is more
time-consuming than TVPSO as well. It reflects that TVPSO has stronger search ability than GA
on the tested problems. In addition, it is interesting to see that the standard deviation for the
acquired performance by the PTVPSO-FKNN is much smaller than that of GA-FKNN on both
datasets, which indicates consistency and stability of the proposed model.

<Insert Table 7 here>
<Insert Table 8 here>
<Insert Table 9 here>
<Insert Table 10 here>

To explore how many features and what features are selected during the PSO feature selection

procedure, we attempted to further investigate the detail of the feature selection mechanism of the
PSO algorithm. For simplicity, here we only took the Wieslaw dataset for example. The original
numbers of features of the dataset is 30. As shown in Table 11, not all features are selected for
classification after the feature selection. Furthermore, feature selection has increased the
classification accuracy, as demonstrated in Table 7 and Table 8. The average number of selected
features by PTVPSO-FKNN is 15.3, and its most important features are C/CL(X1), C/TA(X2),
CA/TA(X4), WC/TA(X5), S/I(X7), NP/TA(X9), S/R2(X16), S/CA(X18), S/TA2(X20), R/L(X23),
L/TA(X25) and LTL/E(X27), which can be found in the frequency of the selected features of

10-fold CV as shown in Fig. 4. Note that the important features (financial ratios) selected by the
proposed model are indeed important from the knowledge perspective also as they are related to
current liabilities and long term liabilities, current assets, shareholders’ equity and cash, sales,
inventory, working capital, net profit, receivables, liabilities, total assets.

<Insert Table 11 here>
<Insert Fig.4 here>
<Insert Fig.5 here>

To observe the evolutionary process in PTVPSO-FKNN, Fig. 5 shows the evolution of the best

fitness for fold 1# within 10-fold CV on the Wieslaw dataset. It should be noted that these results
are calculated based on the global best positions, namely, the fitness of all the local best positions
on the training set are calculated to obtain the best fitness of the population in each generation.
The evolutionary processes are quite interesting. It can be observed that the fitness curves
gradually improved from iteration 1 to 130 and exhibited no significant improvements after
iteration 22, eventually stopped at the iteration 130 where the particles reached the stopping
criterion (100 successively same gbest values). The fitness increase rapidly in the beginning of the
evolution, after certain number of generations, it starts increasing slowly. During the latter part of
the evolution, the fitness keeps stability until the stopping criterion is satisfied. This demonstrates
that PTVPSO-FKNN can converge quickly toward the global optima, and fine tune the solutions
very efficiently. The phenomenon illustrates the effectiveness of PTVPSO-FKNN in
simultaneously evolving the parameters (k and m) and the features through using the TVPSO
algorithm.

5.3 Experiment III: Comparison between the Parallel TVPSO-FKNN Model and the
Serial One

In order to reduce further the running time of the serial TVPSO-FKNN model, we implemented
the TVPSO-FKNN model in a parallel environment. To validate the efficiency of the parallel
version, here we attempted to compare the performance of the PTVPSO-FKNN with that of
TVPSO-FKNN. Table 12 reports the average results of Type I error, Type II error, AUC, ACC and
computational time in seconds via 10-fold CV using two models on the two datasets. It can be
seen that PTVPSO-FKNN and TVPSO-FKNN give almost the same results on both datasets,
minor difference between the parallel model and the serial one is attributed to different partitions
of the data are chosen when perform different folds within 10-fold CV. Thus, it verifies the
correctness of the parallel design and implementation.

<Insert Table 12 here>
<Insert Fig.6 here>

As shown in the Table 12, it can be seen that the average training time within the 10-fold CV for

the TVPSO-FKNN was about 3.2 times that of the PTVPSO-FKNN on the Wieslaw dataset, while
about 3.3 times that of PTVPSO-FKNN on the Australian dataset. Moreover, the average CPU
time spent by the two methods within 10-fold CV has been presented in Fig.6. It can be observed
that PTVPSO-FKNN cost much fewer CPU time than TVPSO-FKNN on each fold of the dataset.

It indicates that the TVPSO-FKNN has benefited a great deal from the parallel implementation
with respect to the computational time. It is worth noticing that here only a quad-core processor is
used in this experiment, thus the computational time will be further reduced with increase of the
cores.

6 Conclusions and Future work
This study provides a novel model for bankruptcy prediction. The main novelty of this model is

in the proposed TVPSO-based approach, which aims at aiding the FKNN classifier to achieve the
maximum classification performance. On the one hand, the continuous TVPSO is employed to
adaptively specify the two important parameters k and m of the FKNN classifier. On the other
hand, the binary TVPSO is adopted to identify the most discriminative features. Moreover, both
the continuous and binary TVPSO are implemented in a parallel environment to reduce further the
computational time. The experimental results demonstrate that the developed model performs
significantly better than the other five state-of-the-art classifiers (KNN, SVM, BPNN, PNN and
ELM) in financial application field in terms of Type I error, Type II error, ACC and AUC on two
real-life cases. In addition, the experiment reveals that the PTVPSO-FKNN is also a powerful
feature selection tool which has detected a subset of best discriminative financial ratios that are
really important from the knowledge perspective. Last but not least, the proposed model computes
rather efficiently owing to the high performance computing technology.

Hence, it can be safely concluded that, the developed PTVPSO-FKNN model can serve as a
promising alternative early warning system in financial decision-making. Meanwhile, we should
note that the proposed model does perform efficiently on the data at hand; however, it is not
obvious that the parallel algorithm will lead to significant improvement when applying to the
financial data with larger instances. Future investigation will pay much attention to evaluating the
proposed model in the larger datasets.

7 Acknowledgements
 This research is supported by the National Natural Science Foundation of China (NSFC)

under Grant Nos. 60873149, 60973088, 60773099 and the National High-Tech Research and
Development Plan of China under Grant Nos. 2006AA10Z245, 2006AA10A309. This work is
also supported by the Open Projects of Shanghai Key Laboratory of Intelligent Information
Processing in Fudan University under the Grant No. IIPL-09-007, the Open Project Program of the
National Laboratory of Pattern Recognition (NLPR) and the basic scientific research fund of
Chinese Ministry of Education.

References
[1]. Beaver, W.H., Financial ratios as predictors of failure. Journal of Accounting Research, 1966. 4: p.

71-111.
[2]. Altaian, E.I., Financial ratios, discriminant analysis and the prediction of corporate bankruptcy.

Journal of Finance, 1968. 23(4): p. 589-609.
[3]. Ohlson, J.A., Financial ratios and the probabilistic prediction of bankruptcy. Journal of

Accounting Research, 1980: p. 109-131.
[4]. West, R.C., A factor-analytic approach to bank condition. Journal of Banking & Finance, 1985.

9(2): p. 253-266.

[5]. Odom, M.D. and R. Sharda. A neural network model for bankruptcy prediction. in: Proceedings of
the IEEE International Joint Conference on Neural Networks. San Diego, CA, 2, pp. 163–168.
1990.

[6]. Wilson, R.L. and R. Sharda, Bankruptcy prediction using neural networks. Decision Support
Systems, 1994. 11(5): p. 545-557.

[7]. Atiya, A.F., Bankruptcy prediction for credit risk using neural networks: Asurvey and new results.
IEEE Transactions on neural networks, 2001. 12(4): p. 929-935.

[8]. Tsai, C.F., Financial decision support using neural networks and support vector machines. Expert
Systems, 2008. 25(4): p. 380-393.

[9]. Zhang, G., Artificial neural networks in bankruptcy prediction: General framework and
cross-validation analysis. European Journal of Operational Research, 1999. 116(1): p. 16-32.

[10]. Leshno, M. and Y. Spector, Neural network prediction analysis: The bankruptcy case.
Neurocomputing, 1996. 10(2): p. 125-147.

[11]. P. Ravisankar, V. Ravi, Financial distress prediction in banks using Group Method of Data
Handling neural network, counter propagation neural network and fuzzy ARTMAP.
Knowledge-Based Systems, 2010. 23(8), p. 823-831.

[12]. McKee, T.E. A mathematically derived rough set model for bankruptcy prediction. 1998. In
Brown, C.E. (Ed.), Collected Papers of the Seventh Annual Research Workshop on Artificial
Intelligence and Emerging Technologies in Accounting, Auditing and Tax, Artificial
Intelligence/Emerging Technologies Section of the American Accounting Association.

[13]. McKee, T.E. and T. Lensberg, Genetic programming and rough sets: A hybrid approach to
bankruptcy classification. European Journal of Operational Research, 2002. 138(2): p. 436-451.

[14]. Dimitras, A.I., R. Slowinski, R. Susmaga, and C. Zopounidis, Business failure prediction using
rough sets. European Journal of Operational Research, 1999. 114(2): p. 263-280.

[15]. Shin, K.S., T.S. Lee, and H.J. Kim, An application of support vector machines in bankruptcy
prediction model. Expert Systems with Applications, 2005. 28(1): p. 127-135.

[16]. Min, J.H. and Y.C. Lee, Bankruptcy prediction using support vector machine with optimal choice
of kernel function parameters. Expert Systems with Applications, 2005. 28(4): p. 603-614.

[17]. Fengyi Lin, Ching-Chiang Yeh, Meng-Yuan Lee, The use of hybrid manifold learning and support
vector machines in the prediction of business failure. Knowledge-Based Systems, 2011. 24(1): p.
95-101.

[18]. Yip, A.Y.N. Predicting business failure with a case-based reasoning approach. in: M.G. Negoita,
R.J. Howlett, L.C. Jain (Eds.), Knowledge-Based Intelligent Information and Engineering
Systems: 8th International Conference, KES 2004, Wellington, New Zealand, September
3215/2004, Proceedings, Part III, 2004, pp. 20–25.

[19]. Park, C.-S. and I. Han, A case-based reasoning with the feature weights derived by analytic
hierarchy process for bankruptcy prediction. Expert Systems with Applications, 2002. 23(3): p.
255-264.

[20]. Bian, H. and L. Mazlack Fuzzy-rough nearest-neighbor classification approach.22nd International
Conference of the North American Fuzzy Information Processing Society (NAFIPS 2003)
Proceedings Chicago, 2003. p. 500–505.

[21]. Sarkar, S. and R.S. Sriram, Bayesian models for early warning of bank failures. Management
Science, 2001. 47(11): p. 1457-1475.

[22]. Sun, L. and P.P. Shenoy, Using Bayesian networks for bankruptcy prediction: Some

methodological issues. European Journal of Operational Research, 2007. 180(2): p. 738-753.
[23]. Tolga Ayd n, Halil Altay G venire, Modeling interestingness of streaming association rules as a

benefit-maximizing classification problem. Knowledge-Based Systems, 2009. 22(1):p.85-99.
[24]. Juan L. Castro, Maria Navarro, Jos M. S nchez, Jos M. Zurita, Introducing attribute risk for

retrieval in case-based reasoning. Knowledge-Based Systems, 2011. 24(2): p.257-268.
[25]. Verikas, A., Z. Kalsyte, M. Bacauskiene, and A. Gelzinis, Hybrid and ensemble-based soft

computing techniques in bankruptcy prediction: a survey. Soft Computing, 2010. 14(9): p.
995-1010.

[26]. Kumar, P.R. and V. Ravi, Bankruptcy prediction in banks and firms via statistical and intelligent
techniques - A review. European Journal of Operational Research, 2007. 180(1): p. 1-28.

[27]. Keller, J.M., M.R. Gray, and J.A. Givens, A fuzzy k-nearest neighbours algorithm. IEEE Trans.
Syst. Man Cybern, 1985. 15(4): p. 580-585.

[28]. Sim, J., S.Y. Kim, and J. Lee, Prediction of protein solvent accessibility using fuzzy k-nearest
neighbor method. Bioinformatics, 2005. 21(12): p. 2844.

[29]. Huang, Y. and Y. Li, Prediction of protein subcellular locations using fuzzy k-NN method.
Bioinformatics, 2004. 20(1): p. 21-28.

[30]. Zhang, T.L., Y.S. Ding, and K.C. Chou, Prediction protein structural classes with pseudo-amino
acid composition: approximate entropy and hydrophobicity pattern. Journal of theoretical biology,
2008. 250(1): p. 186-193.

[31]. Liao, T.W. and D. Li, Two manufacturing applications of the fuzzy K-NN algorithm. Fuzzy Sets
and Systems, 1997. 92(3): p. 289-304.

[32]. Yu, S., S. De Backer, and P. Scheunders, Genetic feature selection combined with composite fuzzy
nearest neighbor classifiers for hyperspectral satellite imagery. Pattern Recognition Letters, 2002.
23(1-3): p. 183-190.

[33]. Bian, H. and L. Mazlack. Fuzzy-rough nearest-neighbor classification approach. in: 22nd
International Conference of the North American Fuzzy Information Processing Society (NAFIPS
2003) Proceedings Chicago, 2003, pp. 500–505.

[34]. Tsai, C.F., Feature selection in bankruptcy prediction. Knowledge-Based Systems, 2009. 22(2): p.
120-127.

[35]. Min, S.H., J. Lee, and I. Han, Hybrid genetic algorithms and support vector machines for
bankruptcy prediction. Expert Systems with Applications, 2006. 31(3): p. 652-660.

[36]. Ravi, V. and C. Pramodh, Threshold accepting trained principal component neural network and
feature subset selection: Application to bankruptcy prediction in banks. Applied Soft Computing,
2008. 8(4): p. 1539-1548.

[37]. du Jardin, P., Predicting bankruptcy using neural networks and other classification methods: The
influence of variable selection techniques on model accuracy. Neurocomputing. 73(10-12): p.
2047-2060.

[38]. Guyon, I. and A. Elisseeff, An introduction to variable and feature selection. The Journal of
Machine Learning Research, 2003. 3: p. 1157-1182.

[39]. Trabelsi, A. and A. Esseghir Mohamed, New Evolutionary Bankruptcy Forecasting Model Based
on Genetic Algorithms and Neural Networks, in Proceedings of the 17th IEEE International
Conference on Tools with Artificial Intelligence. 2005, p.241-245.

[40]. Back, B., T. Laitinen, and K. Sere, Neural networks and genetic algorithms for bankruptcy
predictions. Expert Systems with Applications, 1996. 11(4): p. 407-413.

[41]. Ignizio, J.P. and J.R. Soltys, Simultaneous design and training of ontogenic neural network
classifiers. Computers & Operations Research, 1996. 23(6): p. 535-546.

[42]. Chen, L.H. and H.D. Hsiao, Feature selection to diagnose a business crisis by using a real
GA-based support vector machine: An empirical study. Expert Systems with Applications, 2008.
35(3): p. 1145-1155.

[43]. Wu, C.H., G.H. Tzeng, Y.J. Goo, and W.C. Fang, A real-valued genetic algorithm to optimize the
parameters of support vector machine for predicting bankruptcy. Expert Systems with
Applications, 2007. 32(2): p. 397-408.

[44]. Yi-Chung, H., Incorporating a non-additive decision making method into multi-layer neural
networks and its application to financial distress analysis. Know.-Based Syst., 2008. 21(5): p.
383-390.

[45]. Yi-Chung, H. and T. Fang-Mei, Functional-link net with fuzzy integral for bankruptcy prediction.
Neurocomput., 2007. 70(16-18): p. 2959-2968.

[46]. Eberhart, R.C. and J. Kennedy. A new optimizer using particle swarm theory. in: Sixth
international symposium on micro machine and human science, Nagoya, pp 39–43. 1995.

[47]. Chapman, B., G. Jost, and R. Van der Pas, Using OpenMP: portable shared memory parallel
programming. 2007: The MIT Press.

[48]. Kennedy, J. and R.C. Eberhart. Particle swarm optimization. in: Proceedings of the IEEE
International Conference on Neural Network, vol. 4, 1995, pp. 1942–1948.

[49]. Eberhart, R.C. and Y. Shi. Particle swarm optimization: developments, applications and resources.
in: Proceedings of 2001 Congress on evolutionary computation,vol.1 2001,pp.81-86.

[50]. Shi, Y. and R. Eberhart. A modified particle swarm optimizer. in Proceedings of the IEEE
international conference on evolutionary computation, Piscataway, NJ (1998). p. 69–73.

[51]. Shi, Y. and R.C. Eberhart. Empirical study of particle swarm optimization. 1999: Congress on
evolutionary computation, Washington D.C., USA, pp 1945–1949.

[52]. Ratnaweera, A., S. Halgamuge, and H. Watson, Self-organizing hierarchical particle swarm
optimizer with time-varying acceleration coefficients. IEEE transactions on Evolutionary
Computation, 2004. 8(3): p. 240-255.

[53]. Kennedy, J. and R.C. Eberhart. A discrete binary version of the particle swarm algorithm.
in:Proceedings of IEEE conference on systems, man and cybernetics.1997, p .4104–4108.

[54]. Wieslaw, P., Application of discrete predicting structures in an early warning expert system for
financial distress. 2004, Ph. D. Thesis. Szczecin: Szczecin Technical University.

[55]. Pietruszkiewicz, W. Dynamical systems and nonlinear Kalman filtering applied in classification.
7th IEEE International Conference on Cybernetic Intelligent Systems, 2008, p.1-6.

[56]. Duda, R.O., P.E. Hart, and D.G. Stork, Pattern classification. 2001: Wiley, New York,2001.
[57]. Hsu, C.W., C.C. Chang, and C.J. Lin, A practical guide to support vector classification. 2003,

Technical report, Department of Computer Science and Information Engineering, National Taiwan
University, Taipei, 2003. available at http://www.csie.ntu.edu.tw/cjlin/libsvm/.

[58]. Salzberg, S.L., On comparing classifiers: Pitfalls to avoid and a recommended approach. Data
mining and knowledge discovery, 1997. 1(3): p. 317-328.

[59]. Statnikov, A., I. Tsamardinos, Y. Dosbayev, and C.F. Aliferis, GEMS: A system for automated
cancer diagnosis and biomarker discovery from microarray gene expression data. International
Journal of Medical Informatics, 2005. 74(7-8): p. 491-503.

[60]. Vapnik V.N., The nature of statistical learning theory. 1995:Springer, New York,1995.

[61]. Huang, G.-B., Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: Theory and applications,”
Neurocomputing, 2006. 70(1–3), p. 489–501.

[62]. Chang, C.C. and Lin, C.J, LIBSVM: a library for support vector machines. 2001, Software
available at http://www.csie.ntu.edu.tw/cjlin/libsvm.

[63]. Fawcett, T., An introduction to ROC analysis. Pattern recognition letters, 2006. 27(8): p. 861-874.

Figure Captions:
Fig.1. Flowchart of the TVPSO-FKNN model
Fig.2. Parallel architecture of the PTVPSO-FKNN model
Fig.3. Two-dimensional distribution of the two classes (bankrupt and non-bankrupt) in the
subspace formed by the best couple of features obtained with the PCA algorithm
Fig.4. The frequency of the selected features via 10-fold CV on the Wieslaw dataset
Fig.5. The best fitness during the training stage for fold #1 on the Wieslaw dataset
Fig.6. The average CPU time costs of two models via 10-fold CV on the Wieslaw dataset and
Australian dataset (The legend TVPSO-FKNN-WIE and PTVPSO-FKNN-WIE represent the
serial model and the parallel model performing on the Wieslaw dataset respectively,
TVPSO-FKNN-AUS and PTVPSO-FKNN-AUS represent the serial model and the parallel model
performing on the Australian dataset respectively).

Table Captions:
Table 1 The description of the Wieslaw dataset
Table 2 Confusion matrix for bankruptcy prediction
Table 3 The ACC, Type I error, Type II error and AUC achieved by different classifiers on the
Wieslaw dataset

Table 4 The ACC, Type I error, Type II error and AUC achieved by different classifiers on the
Australian dataset
Table 5 The detailed results obtained by TVPSO-FKNN via 10-fold CV on the Wieslaw dataset
Table 6 The detailed results obtained by TVPSO-FKNN via 10-fold CV on the Australian dataset
Table 7 Experimental results of PTVPSO-FKNN with and without feature selection (%) on the
Wieslaw dataset
Table 8 Experimental results of PTVPSO-FKNN with and without feature selection (%) on the
Australian dataset
Table 9 Experimental results of PTVPSO-FKNN vs. GA-FKNN (%) on the Wieslaw dataset
Table 10 Experimental results of PTVPSO-FKNN vs. GA-FKNN (%) on the Australian dataset
Table 11 The subset of features selected by PTVPSO-FKNN via 10-fold CV on the Wieslaw
dataset
Table 12 The performance of PTVPSO-FKNN and TVPSO-FKNN

E
n
c
o
d
e
k

,
 m

a
n
d

f
e
a
t
u
r
e
s
 k
 m
 0

o
r

1
 .
.
.

C
r
e
a
t
e

i
n
i
t
i
a
l

p
a
r
t
i
c
l
e

w
i
t
h

f
e
a
s
i
b
l
e

r
a
n
d
o
m

n
u
m
b
e
r
s

k
1
 m
1
 0

o
r

1
 .
.
.

k
n
 m
n
 0

o
r

1
 .
.
.

T
r
a
i
n

F
K
N
N

m
o
d
e
l

U
s
e
 k

,
m

a
n
d

t
h
e

f
e
a
t
u
r
e
s

w
h
o
s
e

v
a
l
u
e
s

a
r
e

'
1
'

i
n

e
a
c
h

p
a
r
t
i
c
l
e

C
a
l
c
u
l
a
t
e

t
h
e

f
i
t
n
e
s
s

v
a
l
u
e

S
t
e
p

1

S
t
e
p

7

S
t
e
p

5

S
t
e
p

4

S
t
e
p

3

S
t
e
p

2

s
a
v
e

t
h
e

o
p
t
i
m
a
l

g
l
o
b
a
l

f
i
t
n
e
s
s

a
s
g
f
i
t
,

t
h
e

o
p
t
i
m
a
l

p
e
r
s
o
n
a
l

f
i
t
n
e
s
s

a
s
p
f
i
t
,

g
l
o
b
a
l

o
p
t
i
m
a
l

p
a
r
t
i
c
l
e

a
s
g
b
e
s
t
 a
n
d

p
e
r
s
o
n
a
l

o
p
t
i
m
a
l

p
o
s
i
t
i
o
n

a
s
p
b
e
s
t

U
p
d
a
t
e

t
h
e

p
o
s
i
t
i
o
n

a
n
d

v
e
l
o
c
i
t
y

o
f

e
a
c
h

p
a
r
t
i
c
l
e

A
c
c
o
r
d
i
n
g

t
o

E
q
s
.

(
7
-
8
)

f
o
r

p
a
r
a
m
e
t
e
r

o
p
t
i
m
i
z
a
t
i
o
n
,

E
q
s
.

(
7
)
,

(
1
2
)

a
n
d

(
1
3
)

f
o
r

f
e
a
t
u
r
e

s
e
l
e
c
t
i
o
n

T
r
a
i
n

F
K
N
N

m
o
d
e
l

a
n
d

c
a
l
c
u
l
a
t
e

t
h
e

f
i
t
n
e
s
s

v
a
l
u
e

T
r
a
i
n

b
y

u
s
i
n
g

t
h
e

s
e
l
e
c
t
e
d

f
e
a
t
u
r
e

s
u
b
s
e
t

i
n

S
t
e
p

6
,

c
a
l
c
u
l
a
t
i
o
n

o
f

f
i
t
n
e
s
s

v
a
l
u
e

a
c
c
o
r
d
i
n
g

t
o

E
q
.

(
1
4
)

C
o
m
p
a
r
e

t
h
e

c
u
r
r
e
n
t

f
i
t
n
e
s
s

v
a
l
u
e

w
i
t
h

t
h
e
p
f
i
t

s
t
o
r
e
d

i
n

t
h
e

m
e
m
o
r
y

U
p
d
a
t
e

t
h
e

p
e
r
s
o
n
a
l

o
p
t
i
m
a
l

f
i
t
n
e
s
s

(
p
f
i
t
)

a
n
d

p
e
r
s
o
n
a
l

o
p
t
i
m
a
l

p
o
s
i
t
i
o
n

(
p
b
e
s
t
)

S
t
e
p

8

U
p
d
a
t
e

t
h
e

g
l
o
b
a
l

o
p
t
i
m
a
l

f
i
t
n
e
s
s

(
g
f
i
t
)

a
n
d

g
l
o
b
a
l

o
p
t
i
m
a
l

p
a
r
t
i
c
l
e

(
g
b
e
s
t
)

C
o
m
p
a
r
e

t
h
e
g
f
i
t

w
i
t
h

t
h
e

o
p
t
i
m
a
l

p
f
i
t

f
r
o
m

t
h
e

w
h
o
l
e

p
o
p
u
l
a
t
i
o
n

R
e
a
c
h
e
d

s
i
z
e

o
f

p
o
p
u
l
a
t
i
o
n
?

R
e
a
c
h
e
d

s
t
o
p
p
i
n
g

c
r
i
t
e
r
i
a
?

S
t
e
p

9

S
t
e
p

1
1

S
t
e
p

1
0

C
o
n
t
i
n
u
e

u
n
t
i
l

t
h
e

p
o
p
u
l
a
t
i
o
n

s
i
z
e

C
o
n
t
i
n
u
e

u
n
t
i
l

t
h
e

i
t
e
r
a
t
i
o
n

s
i
z
e

P
a
r
a
m
e
t
e
r

O
p
t
i
m
i
z
a
t
i
o
n

a
n
d

F
e
a
t
u
r
e

S
e
l
e
c
t
i
o
n

b
y

T
V
P
S
O

a
l
g
o
r
i
t
h
m

Y
e
s

N
o

Y
e
s

N
o

n
P

1
P

G
e
t

t
h
e

o
p
t
i
m
a
l
k
,
 m

a
n
d

t
h
e

o
p
t
i
m
a
l

f
e
a
t
u
r
e

s
u
b
s
e
t

f
r
o
m

g
b
e
s
t

.
.
.

C
a
l
c
u
a
l
a
t
e

t
h
e

a
v
e
r
a
g
e

a
c
c
u
r
a
c
y

r
a
t
e

T
r
a
i
n

F
K
N
N

w
i
t
h

t
h
e

b
e
s
t

(
k
,
 m

)

a
n
d

t
h
e

o
p
t
i
m
a
l

f
e
a
t
u
r
e

s
u
b
s
e
t

a
s

t
h
e

i
n
p
u
t

o
n

t
h
e
K
-
1

t
r
a
i
n
i
n
g

s
u
b
s
e
t

P
r
e
d
i
c
t

t
h
e

l
a
b
e
l
s

i
n

t
h
e

r
e
s
t

1

t
e
s
t

s
u
b
s
e
t

w
i
t
h

s
e
l
e
c
t
e
d

f
e
a
t
u
r
e
s

K
-
f
o
l
d

c
r
o
s
s
-

v
a
l
i
d
a
t
i
o
n

t
e
r
m
i
n
a
t
i
o
n

?

Y
e
s

N
o

T
e
s
t
i
n
g

s
t
a
g
e
I
n
c
r
e
a
s
e

t
h
e

n
u
m
b
e
r

o
f

i
t
e
r
a
t
i
o
n
s
 S
e
t
i

=

i

+
1

S
t
e
p

1
2

S
e
t
K

=
K

+
1

S
t
e
p

6

Figure(1)

TVPSO-FKNN

OpenMP

Multi-core processor

Core 1

Core 2

Core 3

Core 4

Particles

Scheduler

Figure(2)

−1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

1

1.5

1st Principal Component

2n
d

P
rin

ci
pa

l C
om

po
ne

nt

Bankruptcy companies
Non−bankruptcy companies

Figure(3)

0

2

4

6

8

10

F
re

q
u

en
cy

X 1 X 5 X 9 X 13 X 17 X 21 X 25 X 29

Figure(4)

0 20 40 60 80 100 120 140
0.862

0.864

0.866

0.868

0.87

0.872

0.874

0.876

0.878

0.88

0.882

Number of iterations

B
es

t
F

it
n

es
s

Figure(5)

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950

1000

C
P

U
 ti

m
e

(s
)

1# 2# 3# 4# 5# 6# 7# 8# 9# 10
#

TVPSO−FKNN−WIE
PTVPSO−FKNN−WIE
TVPSO−FKNN−AUS
PTVPSO−FKNN−AUS

Figure(6)

No. Predictor variable name Financial ratios

X1 cash/current liabilities C/CL

X2 cash/total assets C/TA

X3 current assets/current liabilities CA/CL

X4 current assets/total assets CA/TA

X5 working capital/total assets WC/TA

X6 working capital/sales WC/S

X7 sales/inventory S/I

X8 sales/receivables S/R1

X9 net profit/total assets NP/TA

X10 net profit/current assets NP/CA

X11 net profit/sales NP/S1

X12 gross profit/sales GP/S

X13 net profit/liabilities NP/L

X14 net profit/equity NP/E

X15 net profit/(equity + long term liabilities) NP/EL

X16 sales/receivables S/R2

X17 sales/total assets S/TA1

X18 sales/current assets S/CA

X19 (365*receivables)/sales R/S

X20 sales/total assets S/TA2

X21 liabilities/total income L/TI

X22 current liabilities/total income CL/TI

X23 receivables/liabilities R/L

X24 net profit/sales NP/S2

X25 liabilities/total assets L/TA

X26 liabilities/equity L/E

X27 long term liabilities/equity LTL/E

X28 current liabilities/equity CL/E

X29 EBIT (Earnings Before Interests and Taxes)/total assets EBIT/TA

X30 current assets/sales CA/S

Table(1)

 Actual positive

(Bankruptcy)

Actual negative

(Non-Bankruptcy)

Predicted positive

(Bankruptcy)

True Positive (TP) False Positive (FP)

Predicted negative

(Non-Bankruptcy)

False Negative (FN) True Negative (TN)

Table(2)

The best value is shown in bold.

Classifiers ACC (%) Type I error (%) Type II error (%) AUC (%)

PTVPSO-FKNN 81.67 17.58 19.04 81.69

PNN 79.58 21.71 18.52 79.89

BPNN 77.92 20.84 21.46 78.71

KNN 78.75 21.46 21.39 78.57

ELM 77.50 19.11 23.97 78.46

SVM 76.67 18.96 26.55 77.26

Table(3)

The best value is shown in bold.

Classifiers ACC (%) Type I error (%) Type II error (%) AUC (%)

PTVPSO-FKNN 87.10 13.21 12.66 87.07

SVM 85.80 9.36 18.47 86.08

ELM 85.65 12.89 15.31 85.90

KNN 85.80 12.12 16.25 85.82

BPNN 85.80 14.02 14.56 85.71

PNN 85.42 12.88 16.41 85.36

Table(4)

Fold #k #m ACC (%) Type I error (%) Type II error (%) AUC (%)

#1 100 1.27 83.3333 18.18 15.3846 83.2168

#2 55 1.33 83.3333 18.18 15.3846 83.2168

#3 56 1.39 83.3333 16.67 16.6667 83.3333

#4 84 1.29 79.1667 18.18 23.0769 79.3706

#5 38 1.35 79.1667 18.18 23.0769 79.3706

#6 66 1.14 83.3333 16.67 16.6667 83.3333

#7 66 1.34 79.1667 18.18 23.0769 79.3706

#8 1 1.33 79.1667 16.67 25.0000 79.1667

#9 1 3.00 83.3333 18.18 15.3846 83.2168

#10 14 1.27 83.3333 16.67 16.6667 83.3333

Avg. 48.10 1.47 81.67 17.58 19.04 81.69

Dev. 34.05 0.54 2.15 0.78 3.96 2.04

Table(5)

Fold #k #m ACC (%) Type I error (%) Type II error (%) AUC (%)

#1 8 74.99 88.41 22.22 0 88.89

#2 78 97.94 79.71 20.00 20.59 79.71

#3 77 95.73 91.30 12.20 3.57 92.12

#4 99 98.06 84.06 10.81 21.88 83.66

#5 45 61.80 88.41 10.53 12.90 88.29

#6 66 76.89 89.86 9.52 11.11 89.68

#7 9 23.09 91.30 10.81 6.25 91.47

#8 100 100 86.96 13.16 12.90 86.97

#9 71 69.73 85.51 10.00 20.69 84.66

#10 88 32.21 85.51 12.82 16.67 85.26

Avg. 72.10 73.04 87.10 13.21 12.66 87.07

Dev. 27.53 27.50 3.58 4.36 7.56 3.82

Table(6)

Performance metric PTVPSO-FKNN without

feature selection

PTVPSO-FKNN with

feature selection

Paired t-test

 p-value

Type I error 17.58  0.78 15.87 2.42 0.043

Type II error 19.04  3.96 15.66 1.94 0.020

AUC 81.69  2.04 84.24 1.75 0.003

ACC 81.67  2.15 84.17  1.76 0.005

Table(7)

Performance metric PTVPSO-FKNN without

feature selection

PTVPSO-FKNN with

feature selection

Paired t-test

 p-value

Type I error 13.21  4.36 9.18  4.49 0.090

Type II error 12.66  7.56 11.19  3.58 0.490

AUC 87.07  0.04 89.81  2.27 0.053

ACC 87.10  0.04 89.57  2.25 0.090

Table(8)

Performance metric PTVPSO-FKNN GA-FKNN Paired t-test

 p-value

Type I error 15.87 2.42 17.02 5.08 0.354

Type II error 15.66 1.94 14.94 10.47 0.544

AUC 84.24 1.75 84.02 4.20 0.450

ACC 84.17  1.76 83.33  3.40 0.443

Selected features 15.30  2.75 16.00  3.13 0.010

Table(9)

Performance metric PTVPSO-FKNN GA-FKNN Paired t-test

 p-value

Type I error 9.18  4.49 11.50  4.62 0.138

Type II error 11.19  3.58 12.32  5.36 0.455

AUC 89.81  2.27 88.09  2.77 0.079

ACC 89.57  2.25 87.97  2.46 0.075

Selected features 9.50  1.58 10.30  1.70 0.011

Table(10)

Fold Selected features

#1 X2 X4 X5 X7 X10 X11 X12 X15 X20 X22 X23 X26 X27

#2 X1 X3 X4 X6 X7 X8 X11 X13 X15 X16 X17 X18 X19 X20 X23 X25 X30

#3 X1 X2 X4 X6 X7 X9 X13 X16 X20 X22 X23 X24 X25 X27

#4 X1 X2 X3 X4 X5 X9 X10 X12 X13 X15 X17 X18 X20 X22 X23 X24 X25 X29

#5 X1 X2 X3 X6 X7 X8 X9 X10 X11 X12 X15 X18 X19 X20 X23 X25 X27 X28 X29 X30

#6 X5 X7 X9 X14 X17 X18 X19 X21 X23 X24 X25 X27 X30

#7 X2 X4 X5 X7 X8 X12 X13 X16 X17 X18 X21 X23 X25 X29 X30

#8 X1 X2 X3 X4 X5 X7 X8 X16 X19 X20 X25 X27 X29

#9 X1 X5 X9 X12 X16 X18 X20 X23 X24 X25 X26 X28

#10 X1 X2 X5 X8 X9 X10 X11 X14 X15 X16 X17 X18 X21 X23 X25 X27 X28 X30

Table(11)

Date sets PTVPSO-FKNN TVPSO-FKNN

 Type I

error

(%)

Type II

error

(%)

AUC

(%)

ACC

(%)

CPU

Time

(s)

Type I

error

(%)

Type II

error

(%)

AUC

(%)

ACC

(%)

CPU

Time

(s)

Wieslaw 15.87



2.42

15.66



1.94

84.24



1.75

84.17



1.76

120.21



23.34

15.53



5.47

15.95



1.87

84.26



1.98

84.20



1.55

379.56



15.24

Australian 9.18



4.49

11.19



3.58

89.81



2.27

89.57



2.25

208.31



4.74

8.87



4.43

11.82



3.58

89.66



2.57

89.57



2.63

681.26



12.54

Table(12)

A novel bankruptcy prediction model based on an adaptive fuzzy
k-nearest neighbor method

Hui-Ling Chena,b Bo Yanga,b Gang Wanga,b Jie Liua,b Xin Xua,b Su-Jing Wanga,b
Da-You Liua,b

*

a(College of Computer Science and Technology, Jilin University, Changchun 130012, China)
b(Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of
Education, Jilin University, Changchun 130012, China)

Abstract:
Bankruptcy prediction is one of the most important issues in financial decision-making.
Constructing effective corporate bankruptcy prediction models in time is essential to make
companies or banks prevent from bankruptcy. This study proposes a novel bankruptcy prediction
model based on an adaptive fuzzy k-nearest neighbor (FKNN) method, where the neighborhood
size k and the fuzzy strength parameter m are adaptively specified by the continuous particle
swarm optimization (PSO) approach. In addition to performing the parameter optimization for
FKNN, PSO is also utilized to choose the most discriminative subset of features for prediction.
Adaptive control parameters including time-varying acceleration coefficients (TVAC) and
time-varying inertia weight (TVIW) are employed to efficiently control the local and global search
ability of PSO algorithm. Moreover, both the continuous and binary PSO are implemented in
parallel on a multi-core platform. The proposed bankruptcy prediction model, named
PTVPSO-FKNN, is compared with five other state-of-the-art classifiers on two real-life cases. The
obtained results clearly confirm the superiority of the proposed model in terms of classification
accuracy, Type I error, Type II error and area under the receiver operating characteristic curve
(AUC) criterion. The proposed model also demonstrates its ability to identify the most
discriminative financial ratios. Additionally, the proposed model has reduced a large amount of
computational time owing to its parallel implementation. Promisingly, PTVPSO-FKNN might
serve as a new candidate of powerful early warning systems for bankruptcy prediction with
excellent performance.

Keywords: Fuzzy k-nearest neighbor; Parallel computing; Particle swarm optimization; Feature
selection; Bankruptcy prediction

1. Introduction
Accurately identifying the potentially financial failure of companies remains a goal of many

stakeholders involved. Because there is no underlying economic theory of bankruptcy, searching
for more accurate bankruptcy prediction models remains the goal in the field of the bankruptcy
prediction. As a matter of fact, bankruptcy prediction can be formulated as the problem of solving
classification task. A fair amount of classification models has been developed for bankruptcy
prediction. These models have progressed from statistical methods to the artificial intelligence (AI)

* Corresponding author (Da-You Liu) (liudy@jlu.edu.cn;liudayou19420601@gmail.com)

*Manuscript with marked changes

approaches. A number of statistical methods such as the simple univariate analysis [1],
multivariate discriminant analysis technique [2], logistic regression approach [3] and factor
analysis technique [4] have been typically used for financial applications including bankruptcy
prediction. Recent studies in the AI approach, such as artificial neural networks (ANN)
[5][6][7][8][9][10][11], rough set theory [12][13][14], support vector machines (SVM)
[15][16][17], k-nearest neighbor method (KNN) [18][19][20], Bayesian network models [21][22]
and other different methods such as hybrid methods and ensemble methods [23][24][25][26] have
also been successfully applied to bankruptcy prediction (see [25][26] for detail). Among these
techniques, ANN has become one of the most popular techniques for the prediction of corporate
bankruptcy due to its high prediction accuracy. However, a major disadvantage of ANN lies in
their knowledge representation. The black box nature of ANN makes it difficult for humans to
understand how the networks predict the bankruptcy.

Compared with ANN, KNN is simple, easily interpretable and can achieve acceptable accuracy
rate. Albeit these advantages, the standard KNN methods place equal weights on all the selected
neighbors regardless of their distances from the query point. An improvement over the standard
KNN classifier is the Fuzzy k-nearest neighbor classifier (FKNN) [27], which uses concepts from
fuzzy logic to assign degree of membership to different classes while considering the distance of
its k-nearest neighbors. It means that all the instances are assigned a membership value in each
class rather than binary decision of ‘bankruptcy’ or ‘non-bankruptcy’. Points closer to the query
point contributes larger value to be assigned to the membership function of their corresponding
class in comparison to far away neighbors. Class with the highest membership function value is
taken as the winner. The FKNN method has been frequently used for the classification of
biological data [28][29][30], image data [31][32] and so on. Nevertheless, only few works have
paid attention to using FKNN to dealing with the financial problems. Bian et al. [33] used FKNN
as a reference classifier in their experiments in order to show the superiority of the proposed
Fuzzy-rough KNN method, which incorporated the rough set theory into FKNN to further
improve the accuracy of bankruptcy prediction. However, they did not comprehensively
investigate the neighborhood size k and the fuzzy strength parameter m, which play a significant
role in improving the prediction result. This work will explore the full potential of FKNN by
automatically determining k and m to exploit the maximum classification accuracy for bankruptcy
prediction.
 Besides choosing a good learning algorithm, feature selection is also an important issue in
building the bankruptcy prediction models [25][34][35][36][37], which refers to choosing subset
of attributes from the set of original attributes. The purpose of the feature selection is to identify
the significant features and build a good learning model. The benefits of feature selection are
threefold: improving the prediction performance of the predictors, providing faster and more
cost-effective predictors, and providing a better understanding of the underlying process that
generated the data [38]. In bankruptcy prediction, genetic algorithms (GA) is usually used to select
a subset of input features [39][40][41], to find appropriate hyper-parameter values of a predictor
(for example, the kernel width and the regularization constant in the case of SVM) [35][42][43],
or to determine predictor parameters (for example, Multilayer perceptron weights) [44][45].
Compared with GA, PSO algorithm [46] has no crossover and mutation operators, it is simple and
computationally inexpensive both in memory and runtime. Additionally, every particle adjusts
their velocity and position according to the local best and global best. So that all the particles have

a powerful search capability, which can help the swarm find the optimal solution. As for GA, after
finding a locally optimum, it is difficult for it to find out a much better one even with a random
search strategy in terms of mutation operator especially within a reasonable searching time. In this
work, we will focus on exploring the PSO-based parameter optimization and feature selection
approach. The continuous PSO algorithm will be employed to evolve an adaptive FKNN, where
the neighborhood size k and the fuzzy strength parameter m are adaptively specified. On the other
hand, the binary PSO will be used as a feature selection vehicle to identify the most informative
features as well.
 When dealing with the practical problems, the evolutionary-based methods such as the PSO and
GA will cost a lot of computational time. There is an urgent need to improve the performance
using high-performance computing techniques. For this reason, it is one of the major purposes of
this paper to use a parallel environment to speed up the search and optimization process. Both the
continuous and binary PSO are implemented on a multi-core platform using OpenMP (Open
Multi-Processing) which is a portable, scalable model that gives programmers a simple and
flexible interface for developing parallel applications for platforms [47]. The efficiency and
effectiveness of the proposed bankruptcy prediction model is validated by comparing with other
five state-of-the-art classification methods on two real-life cases. The experimental results
demonstrate that the proposed model can not only obtain the most appropriate parameters but also
show high discriminating power as a feature selection tool. Further comparison is also made
between the parallel model and serial one. Based on the experiments conducted, it is inferred that
the parallel model PTVPSO-FKNN can significantly reduce the computational time.

The rest of the paper is organized as follows. In Section 2, we give a brief description of FKNN
method and PSO algorithm. Section 3 proposes our model, the simultaneous optimization of
relevant parameters and feature subset by the PSO approach in a parallel environment. In the next
section, the detailed experimental design is presented, and Section 5 describes all the empirical
results and discussion. Finally, Conclusions and future work are summarized in Section 6.

2. Background Materials

2.1 Fuzzy k-Nearest Neighbor Algorithm
The k-nearest neighbor algorithm (KNN) is one of the oldest and simplest non-parametric

pattern classification methods. In the KNN algorithm a class is assigned according to the most
common class amongst its k-nearest neighbors. In 1985, Keller proposed a fuzzy version of KNN
by incorporating the fuzzy set theory into the KNN algorithm, and named it as “fuzzy KNN
classifier algorithm” (FKNN) [27]. According to his approach, rather than individual classes as in
KNN, the fuzzy memberships of samples are assigned to different categories according to the
following formulation:

2/(1)

1

2/(1)

1

(1 || ||)
()

(1 || ||)

k
m

ij j
j

i k
m

j
j

u x x
u x

x x

-

=

-

=

-
=

-

å

å
 (1)

where i=1,2,…C, and j=1,2,…,k, with C number of classes and k number of nearest neighbors.
The fuzzy strength parameter m is used to determine how heavily the distance is weighted when
calculating each neighbor’s contribution to the membership value, and its value is usually chosen

http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6V30-4X8M54Y-1&_mathId=mml25&_user=1021782&_cdi=5716&_pii=S0378779609001977&_rdoc=1&_issn=03787796&_acct=C000050479&_version=1&_userid=1021782&md5=2781954a5ceb12a1998a6c33851f08f3
http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6V30-4X8M54Y-1&_mathId=mml26&_user=1021782&_cdi=5716&_pii=S0378779609001977&_rdoc=1&_issn=03787796&_acct=C000050479&_version=1&_userid=1021782&md5=5fc5a3f5b8efb0d4e6119b1f962c13c2

as (1,)mÎ ¥ . ||x - xj|| is the distance between x and its jth nearest neighbor xj. Various metrics can
be chosen for ||x - xj||, such as Euclidean distance, Hamming distance, and Mahalanobis distance,
among other distances. In this study, the Euclidean metric is used. uij is the membership degree of
the pattern xj from the training set to the class i, among the k nearest neighbors of x. There are two
ways [27] to define uij, one way is the crisp membership, i.e., each training pattern has complete
membership in their known class and non-memberships in all other classes. The other way is the
constrained fuzzy membership, i.e., the k nearest neighbors of each training pattern (say xk) are
found, and the membership of xk in each class is assigned as:

0.51 ()*0.49, if
()*0.49, if .() j

j
ij k

n K j i
n K j iu x ì

í
î

+ =
¹= (2)

The value nj is the number of neighbors found which belong to the jth class. Note that, the
memberships calculated by Eq. (2) should satisfy the following equations:

1
1, 1,2, , ,

C

ij
I

j nm
=

= =å L (3)

1
0 ,

n

ij
j

u n
=

< <å (4)

[0,1].iju Î (5)

In our experiments, we have found that the second way leads to better classification accuracy.
After calculating all the memberships for a query sample, it is assigned to the class with which it
has the highest membership value, i.e.,

1
() argmax(())

C

i
i

C x u x
=

= (6)

The pseudo-code of the FKNN algorithm is given below:

 Input: (a) The training set X with the labeled patterns { | 1,2, , }ix i n= K .
 (b) The test pattern y.
Output: (a) Class label of y.

 (b) Confidence for each class label.
ALGORITHM:
For i = 1, 2, … , to n

 Compute the distance from xi to y using the Euclidean metric.
 If i ≤ k
 Include xi in the set of k nearest neighbors.
 Else if (xi is closer to y than any previous nearest neighbors)
 Delete the farthest of the k nearest neighbors.

Include xi in the set of k nearest neighbors.
End if

End for
For c = 1 to C
Compute ui(x) using (1).
End for
Crisp class label of y is assigned to the class with which it has the highest membership value

using (6).

2.2 Time Variant Particle Swarm Optimization (TVPSO)
PSO is inspired by the social behavior of organisms such as bird flocking and fish schooling,

which was first developed by Kennedy and Eberhart [46][48]. In PSO each individual is treated as
a particle in d-dimensional space, and each particle has a position and velocity. The position vector
of the ith particle is represented as Xi = (xi,1,xi,2,…,xi,d), and its according velocity is represented as
Vi = (vi,1,vi,2,…,vi,d). The velocity and position are updated as follows:

1
, , 1 1 , , 2 2 , ,() ()n n n n n n

i j i j i j i j g j i jv w v c r p x c r p x+ = ´ + ´ - + ´ - (7)

1 1
, , , , 1,2, ,n n n

i j i j i jx x v j d+ += + = L (8)

where Vector Pi = (pi,1, pi,2,…, pi,d) represents the best previous position of the ith particle that
gives the best fitness value, which is known as the personal best position (pbest). Vector Pg = (pg,1,
pg,2, …, pg,d) is the best particle among all the particles in the population, which is known as the
global best position (gbest). r1 and r2 are random numbers, generated uniformly in the range [0, 1].
The velocity vi,j is restricted to the range [-vmax, vmax], in order to prevent the particles from
flying out of the solution space. Generally, maxv is suggested to set to be 10-20% of the dynamic
range of the variable in each dimension [49].

Inertia weight w, introduced by Shi and Eberhart, which is used to balance the global
exploration and local exploitation [50]. A large inertia weight facilitates the global search, while a
small inertia weight facilitates the local search. In order to reduce the weight over the iterations
allowing the algorithm to exploit some specific areas, the inertia weight w is updated according to
the following equation:

max
min max min

max

()
()

t t
w w w w

t
-

= + - (9)

where maxw , minw are the predefined maximum and minimum values of the inertia weight w, t is
the current iteration of the algorithm and maxt is the maximum number of iterations. Usually the
value of w is varied between 0.9 and 0.4. Eq. (9) is also known as time-varying inertia weight
(TVIW), which will be incorporated into the TVPSO. It has been shown to significantly improve
the performance of PSO [51], since it makes PSO have more global search ability at the beginning
of the run and have more local search ability near the end of the run. 1c and 2c are acceleration
coefficients, which define the magnitude of the influences on the particles velocity in the
directions of the personal and the global optima, respectively. To better balance the search space
between the global exploration and local exploitation, time-varying acceleration coefficients
(TVAC) have been introduced in [52]. This concept will be adopted in this study to ensure the
better search for the solutions. The core idea of TVAC is that 1c decreases from its initial value

of 1ic to 1 fc , while 2c increases from 2ic to 2 fc using the following equations as in [52].

TVAC can be mathematically represented as follows:

1 1 1 1
max

()f i i
tc c c c

t
= - + , (10)

2 2 2 2
max

()f i i
tc c c c

t
= - + . (11)

where 1 fc , 1ic , 2 fc and 2ic are constants, t is the current iteration of the algorithm and maxt is

the maximum number of iterations.
 For the binary PSO, the discrete PSO version introduced by Kennedy and Eberhart [53] was
adopted in this study. The binary PSO is searching in a discrete space (i.e., searching in a space
where ‘0’ presents the feature is selected ‘1’ denotes the feature is discarded). Where a particle
moves in a state space restricted to zero and one on each dimension, in terms of the changes in
probabilities that a bit will be in one state or the other. If the velocity is high it is more likely to
choose ‘1’, and lower values favor choosing ‘0’. A sigmoid function is applied to transform the
velocity from continuous space to probability space:

,
,

1() ,
1 exp()

1,2, ,i j
i j

sig j
v

dv = =
+ -

L (12)

The velocity update Eq. (7) keeps unchanged except that , ,,i j i jx p and ,g jp Î {0,1} , and in order

to ensure that bit can transfer between ‘1’ and ‘0’ with a positive probability, maxv was introduced

to limit ,i jv . The new particle position is updated using the following rule:

,1
,

,

1, ()
, 1, 2, ,

0, ()
i jn

i j
i j

if rnd sig v
x j d

if rnd sig v
+

<ìï= =í ³ïî
L (13)

where ,()i jsig v is calculated according to Eq. (12), rnd is a uniform random number in the

range [0, 1].
 As described above, TVPSO is adaptive in nature by allowing its inertia weight and
acceleration coefficients to vary with iterations during its search in the continuous and discrete
space. This character helps the algorithm explore the search space to a greater extent.

3. Proposed PTVPSO-FKNN Prediction Model
In this section, we describe the proposed PTVPSO-FKNN model for bankruptcy prediction. As

mentioned in the Introduction, the aim of this model is to optimize the FKNN classifier by
automatically: 1) determining the number of nearest neighbors k and the fuzzy strength
parameter m and 2) identifying the subset of best discriminative features. In order to achieve this
goal, the continuous and binary PSO are combined together to dynamically conduct parameter
optimization and feature selection simultaneously. The obtained appropriate feature subset is
served as the input into the optimized FKNN model for classification. PTVPSO-FKNN takes into
consideration two fitness values for parameter optimization and feature selection. One is the
AUC value and the other is the number of selected features by TVPSO. Here, we first describe
the model based on the serial PSO algorithm, termed TVPSO-FKNN, and then implement it in
parallel.

3.1 TVPSO-FKNN Model based on the Serial PSO Algorithm
The flowchart of the TVPSO-FKNN model for bankruptcy prediction was constructed through the

following main steps as shown in Fig. 1.
Step 1: Encode the particle with n+2 dimensions. The first two dimensions are k and m which are

continuous values. The remaining n dimensions is Boolean features mask, which is
represented by discrete value, ‘1’ indicates the feature is selected, and ‘0’ represents the
feature is discarded.

Step 2: Initialize the individuals of the population with random numbers. Meanwhile, specify the
PSO parameters including the lower and upper bounds of the velocity, the size of
particles, the number of iterations, etc.

Step 3: Train the FKNN model with the selected features.
Step 4: It is well known that higher the AUC value the better the classifier is said to be. The

particle with high AUC value and the small number of selected features can produce a
high fitness value. Hence, we took both of them into consideration in designing the
objective function, the fitness value was calculated according to the following objective
function:

1

1
2

1 2

AUC

(1)
n

ij

f

ft
f

n

f f fa b

=

=ì
ï
ïï
í = -

= ´ +ï ´

ï
ï
î

å

 (14)

where variable AUC in the first sub-objective function f1 represents the area under the
ROC curve achieved by the FKNN classifier via K-fold cross-validation (CV), here K=5.
Note that here the 5-fold CV is used to determine the optimal parameters (including k and
m) which is different from the outer loop of 10-fold CV, which is used to do the
performance estimation. In the second sub-objective function f2, fti is the value of feature
mask (‘1’ represents that feature is selected and ‘0’ indicates that feature is discarded), n is
the total number of features. The weighted summation of the two sub-objective functions is
selected as the final objective function. In the function f, α is the weight for FKNN
classification accuracy, β indicates the weight for the selected features. The weight can be
adjusted to a proper value depends on the importance of the sub-objective function.
Because the classification performance more depend on the classification accuracy, hence
the α value is set as much bigger than that of β. According to our preliminary experiments,
the value of α and β were taken as 0.85 and 0.15 respectively. After the fitness value was
obtained, the global optimal fitness was saved as gfit, personal optimal fitness as pfit,
global optimal particle as gbest and personal optimal particle as pbest.

Step 5: Increase the number of iteration.
Step 6: Increase the number of population. Update the position and velocity of k, m using Eqs.(7-8)

and the features using Eq.(7), Eqs.(12-13) in each particle.
Step 7: Train the FKNN classifier with the feature vector obtained in Step 6 and calculate the

fitness value of each particle according to Eq. (14). Notice that PSO is used for
optimization tasks where the neighborhood size k to be optimized is integer number.
Hence, an extra step is taken to round the encoded value k to the nearest integer number
before the particle is evaluated.

Step 8: Update the personal optimal fitness (pfit) and personal optimal position (pbest) by

comparing the current fitness value with the pfit stored in the memory. If the current
fitness is dominated by the pfit stored in the memory, then keep the pfit and pbest in the
memory; otherwise, replace the pfit and pbest in the memory with the current fitness
value and particle position.

Step 9: If the size of the population is reached, then go to Step 10. Otherwise, go to Step 6.
Step 10: Update the global optimal fitness (gfit) and global optimal particle (gbest) by comparing

the gfit with the optimal pfit from the whole population, If the current optimal pfit is
dominated by the gfit stored in the memory, then keep the gfit and gbest in the memory;
otherwise, replace the gfit and gbest in the memory with the current optimal pfit and the
optimal pbest from the whole population.

Step 11: If the stopping criteria are satisfied, then go to Step 12. Otherwise, go to Step 5. The
termination criteria are that the iteration number reaches the maximum number of
iterations or the value of gfit does not improve after 100 consecutive iterations.

Step 12: Get the optimal (k, m) and feature subset from the best particle (gbest).

<Insert Fig.1 here>

3.2 Parallel Implementation of the TVPSO-FKNN (PTVPSO-FKNN)
When dealing with the practical problems, the evolutionary-based methods such as PSO and

GA will cost a lot of computational time. There is an urgent need to improve the performance
using high-performance computing techniques. Consequently, we attempt to implement
TVPSO-FKNN in parallel on multi-core processor by using OpenMP to speed up the search and
optimization process.

The architecture of the multi-core platform is divided into three lays as shown in Fig. 2: 1)
TVPSO-FKNN: It consists of a number of particles, which can supply computing requirements.
The parallel algorithm controls the iterations of particles and each particle is calculated separately.
2) OpenMP: This component guarantees to implement parallel synchronization and establish the
communications with operating system (OS). The main part of OpenMP is scheduler, which
provides the system with job scheduling and allocation. 3) Multi-core processor: The job is
dispatched by OpenMP via OS.

<Insert Fig.2 here>

The pseudo-code of the parallel PTVPSO-FKNN is as follows:

Initialize system parameters.
Train FKNN model.
Calculate fitness.
While (cni < mni) /*current number of iteration (cni), maximum number of iteration (mni).*/
 For each particle
 Update position.
 Update velocity.

 Train FKNN model.
 Calculate fitness.
 Calculate pfit . /* personal optimal fitness (pfit)*/
 Calculate pbest . /* personal optimal position (pbest)*/
 End for
 Calculate gfit. /*global optimal fitness (gfit)*/
 Calculate gbest. /*global optimal particle (gbest)*/
 cni = cni + 1.
End while

4 Experimental Design

4.1 Data Description
The first financial data used for this study is the Wieslaw [54] dataset which contains 30

financial ratios and 240 cases in total (112 from bankrupt Polish companies and 128 from
non-bankrupt ones between 1997 and 2001). All the observations cover the period spanning 2 to 5
years before bankruptcy toke place. It should be noted that the size of the dataset is not that large
compared to the majority of bankruptcy prediction studies. However, according to [55], the dataset
is reliable since increasing the dataset length does not lead to the accuracy increase. The
description of the 30 financial ratios is shown in Table 1. Fig. 3 illustrates the distribution of the
two classes of 240 samples in the subspace formed by the two best features according to the
principal component analysis algorithm [56]. As shown in this figure, there is apparently strong
overlap between the bankrupt companies and non-bankrupt ones.

<Insert Fig.3 here>
<Insert Table 1 here>

The second dataset is the Australian credit dataset, is available from the UCI Repository of

Machine Learning Databases. The Australian credit data consists of 307 instances of creditworthy
applicants and 383 instances where credit is not creditworthy. Each instance contains 6 nominal, 8
numeric attributes, and 1 class attribute (accepted or rejected). This dataset is interesting because
there is a good mixture of attributes: continuous, nominal with small numbers of values, and
nominal with larger numbers of values. There are also a few missing values. To protect the
confidentiality of data, the attributes names and values have been changed to meaningless
symbolic data.

Normalization is employed to avoid feature values in greater numerical ranges dominating
those in smaller numerical ranges, as well as to avoid the numerical difficulties during the
calculation [57]. Generally, the data could be normalized by scaling them into the interval of [0, 1]
or [-1, 1], here we chose the range of [-1, 1] according to the Eq. (15), where x is the original value,
x¢ is the scaled value, amax is the maximum value of feature a, and amin is the minimum value
of feature a.

()*2 1a

a a

x - minx
max - min

¢ = - (15)

In order to gain an unbiased estimate of the generalization accuracy, the k-fold CV presented by
Salzberg [58] was used to evaluate the classification accuracy. This study set k as 10, i.e., the data
was divided into ten subsets. Each time, one of the 10 subsets is used as the test set and the other 9
subsets are put together to form a training set. Then the average error across all 10 trials is
computed. The advantage of this method is that all of the test sets are independent and the
reliability of the results could be improved. And we attempted to design our experiment using two
loops. The inner loop is used to determine the optimal parameters and best feature subset for the
FKNN classifier. The outer loop is used for estimating the performance of the FKNN classifier. In
order to keep the same proportion of bankrupt and non-bankrupt companies of each set as that of
the entire dataset, here a stratified 10-fold CV is employed as the outer loop and a stratified 9-fold
CV is used for the inner loop. It is also referred to as the nested stratified 10-fold CV, which is also
used in [59] for the microarray gene data analysis.

4.2 Experimental Scheme
The proposed experimental framework was articulated around the following three main

experiments.
1) The first experiment aimed at assessing the effectiveness of the FKNN approach in

bankruptcy prediction in the whole original feature space. For comparison purpose, we
implemented five other reference classification approaches, namely KNN, SVM [60], back
propagation neural network (BPNN), the probabilistic neural network (PNN) and extreme learning
machine (ELM) [61]. In addition, we have implemented GA based FKNN (GA-FKNN) for
comparison purpose.

2) In the second experiment, it was plan to assess the capability of the proposed
PTVPSO-FKNN model with feature selection to boost further the performance of the FKNN
classifier by using the time-varying PSO approach. Furthermore, we attempted to investigate the
whole evolutionary process of TVPSO in performing the parameter optimization and feature
selection.

3) The third experimental part had for objective to assess the capability of the proposed
parallel TVPSO-FKNN model to enhance further the efficiency of the serial TVPSO-FKNN
model with respect to the CPU time.

4.3 Experimental Setup
The proposed PTVPSO-FKNN model is implemented using Microsoft Visual C++ 6.0 and

OpenMP. For SVM, LIBSVM implementation is utilized, which is originally developed by Chang
and Lin [62]. Regarding ELM, the implementation by Zhu and Huang available from
http://www3.ntu.edu.sg/home/egbhuang is used. We implement PSO, GA, FKNN and KNN from
scratch. BPNN and PNN are developed by using the Neural Network Toolbox of Matlab 7.0. The
computer is Intel Quad-Core Xeon 2.0 GHz CPU; 4 GB RAM and the system is Windows Server
2003.

The detail parameter setting for PTVPSO-FKNN is as follows. The number of the iterations and
particles are set to 250 and 8 for the Wieslaw dataset, 200 and 5 for the Australian dataset,
respectively. The searching ranges for k and m are as follows: k∈[1, 100] and m∈[1, 10] for the
Wieslaw dataset, k∈[1, 100] and m∈[1, 100] for the Australian dataset. vmax is set about 60% of
the dynamic range of the variable on each dimension for the continuous type of dimensions. For

the discrete type particle for feature selection, [-vmax, vmax] is set as [-6, 6]. As suggested in [52], c1i,
c1f, c2i and c2f are set as follows: c1i =2.5, c1f =0.5, c2i =0.5, c2f =2.5. According to our preliminary
experiment, wmax and wmin are set to 0.9 and 0.4, respectively.

For GA, the solution is binary-encoded and the roulette wheel selection algorithm is used. The
crossover probability and mutation probability are set to 0.8 and 0.05, respectively. To perform a
fair comparison, the same computational effort is used in TVPSO and GA. That is, the maximum
generation, population size and searching range of the parameters in GA are the same as those in
TVPSO. For SVM, we consider the nonlinear SVM based on the popular Gaussian (RBF) kernel,
and a grid-search technique [57] is employed using 10-fold CV to find out the optimal parameter
values of RBF kernel function. The range of the related parameters C and γ are varied between C
= {2-5, 2-3,…,215} and γ = {2-15,2-13,…,21}. There will be 11 9 99´ = parameter combinations of
(,)C g are tried and the one with the best CV accuracy is chosen as the parameter values of the
RBF kernel. Then the best parameter pair (,)C g is used to create the model for training. For
KNN, we find the best value of k within the range [1,100] by using 10-fold CV. Concerning
BPNN, we use the three layer back-propagation network. We try different settings of the number
of nodes in the hidden layers (5, 10, 15, 20, 25 and 30) and the different learning epochs (50, 100,
200 and 300) as the stopping criteria for training. In PNN, the pattern layer uses RBF neuron with
spread parameter of 0.1 and 0.8 give the best accuracies by using the 10-fold CV on the Wieslaw
dataset and Australian dataset, respectively. Hence these two values will be used for the
subsequent analysis. In ELM the sigmoid activation function is used to compute the hidden layer
output matrix. ELM models are built for 100 different numbers of neurons between 1 and 100.
The best number of neurons will be taken to create the training model.

4.4 Measure for Performance Evaluation
Type I error, Type II error, total classification accuracy (ACC) and the area under the Receiver

Operating Characteristic curve (AUC) [63] were used to test the performance of the proposed
PTVPSO-FKNN model. They are the most widely used measures to assess the performance of
bankruptcy prediction systems [25]. Before defining these measures, we introduced the concept of
confusion matrix, which is presented in Table 2. Where TP is the number of true positives, which
means that some cases with ‘positive’ class (with bankruptcy) is correctly classified as positive;
FN, the number of false negatives, which means that some cases with the ‘positive’ class is
classified as negative ; TN, the number of true negatives, which means that some cases with the
‘negative’ class (with non-bankruptcy) is correctly classified as negative; and FP, the number of
false positives, which means that some cases with the ‘negative’ class is classified as positive.

<Insert Table 2 here>

Type I and Type II errors are two important measures which describe how well the classifier

discriminates between case with non-bankruptcy and with bankruptcy. Type I error measures the
proportion of non-bankrupt cases which are incorrectly identified as bankrupt ones. It is defined as
Type I error = FP / (FP + TN). Type II error measures the proportion of bankrupt cases which are
incorrectly identified as non-bankrupt ones. It is defined as Type II error = FN / (TP + FN). The
ACC is calculated by TP + TN / (TP + FP + FN + TN). The receiver operating characteristic (ROC)
curve is a graphical display that gives the measure of the predictive accuracy of a logistic model.

The curve displays the true positive rate and false positive rate. AUC is the area under the ROC
curve, which is one of the best methods for comparing classifiers in two-class problems.

5 Experimental Results and Discussion

5.1 Experiment I: Classification in the Whole Original Feature Space
As mentioned earlier, in this experiment we evaluated the effectiveness of the proposed model

on the original feature space. In order to verify the effectiveness of the proposed model,
TVPSO-FKNN was compared with five other reference classifiers (SVM, KNN, BPNN, PNN and
ELM). Table 3 and Table 4 show the results achieved with all six investigated classifiers
(PTVPSO-FKNN, SVM, KNN, BPNN, PNN and ELM) for the Wieslaw dataset and the
Australian dataset respectively. It is well known that higher the AUC value the better the classifier
is said to be. Accordingly, the classifiers are arranged in the descending order of AUC in the tables.
As clearly indicated in Table 3, PTVPSO-FKNN outperforms all other methods with the AUC of
81.69%, except the Type II error which is slightly higher than that of PNN. PNN is next to
PTVPSO-FKNN with the AUC of 79.89%, Type I error of 21.71%, Type II error of 18.52% and
ACC of 79.58%, followed by BPNN, KNN, ELM and SVM. For the Australian dataset whose
results are shown in Table 4, we can also observe that PTVPSO-FKNN performs best among all
the available methods with the AUC of 87.07%, except the Type I error which is slightly higher
than that of SVM. SVM is next to PTVPSO-FKNN with the AUC of 86.08%, Type I error of
9.36%, Type II error of 18.47% and ACC of 85.80%, followed by ELM, KNN, BPNN and PNN.
The results are interesting and exciting, which suggests that the FKNN approach can become a
promising alternative bankruptcy prediction tool in financial decision-making, where SVM and
ANN are known to be the best models [26].

<Insert Table 3 here>
<Insert Table 4 here>

The better performance of the proposed model is owing to the fact that the TVPSO has aided

the FKNN classifier to achieve the maximum classification performance by automatically
detecting the optimal neighborhood size k and the fuzzy strength parameter m. The detailed
results obtained by the proposed method via 10-fold CV are shown in Table 5 and Table 6 for the
Wieslaw dataset and the Australian dataset respectively. As shown in the two tables, it can be
observed that the values of k and m are different for each fold of the data. With the optimal
combination of k and m, FKNN obtained different best classification performance in each fold in
terms of the ACC, Type I error, Type II error and AUC. In addition, according to our preliminary
experiment, k and m can be varied automatically when perform another run of 10-fold CV. The
explanation lies in the fact that the two parameters are evolved together by the TVPSO algorithm
according to the specific distribution of the training data at hand. It indicates that the optimal
values of k and m can always be adaptively specified by TVPSO during each run.

<Insert Table 5 here>
<Insert Table 6 here>

5.2 Experiment II: Classification with the PTVPSO-FKNN Model with Feature
Selection
As described earlier, the proposed PTVPSO-FKNN model aimed at enhancing the FKNN
classification process by not only dealing with the parameters optimization but also automatically
identifying the subset of the most discriminative features. In this experiment, we attempt to
explore the capability of the PTVPSO-FKNN to further enhance the performance of the FKNN
classifier by using the TVPSO. Table 7 and Table 8 list the results of PTVPSO-FKNN with and
without feature selection for the Wieslaw dataset and the Australian dataset respectively. As shown
in Table 7, results obtained on the Wieslaw dataset using PTVPSO-FKNN with feature selection
significantly outperforms PTVPSO-FKNN without feature selection in terms of Type I error, Type
II error, AUC and ACC at the statistical significance level of 0.05. On the Australian dataset,
PTVPSO-FKNN with feature selection significantly outperforms PTVPSO-FKNN without feature
selection in terms of Type I error, AUC and ACC at the statistical significance level of 0.1. By
using feature selection, the ACC, AUC, Type I error and Type II error have been improved by
2.5%, 2.55%, 1.71% and 3.38% on the Wieslaw dataset, and by 2.47%, 2.74%, 4.03% and 1.47%
on the Australian dataset, respectively. For comparison purpose, we conducted the comparative
study between TVPSO based and GA based FKNN on the two datasets as shown in Table 9 and
Table 10. From Table 9, it can be seen that PTVPSO-FKNN outperforms GA-FKNN in terms of
Type I error, AUC and ACC on the Wieslaw dataset, though the difference between them is not
statistically significant. For the Australian dataset, PTVPSO-FKNN significantly outperforms
GA-FKNN in terms of AUC and ACC at the significant level of 0.1, and achieves better
performance in terms of Type I error and Type II error as shown in Table 10. From the tables, we
can also find that PTVPSO-FKNN has achieved better performance with a smaller feature subset
than GA-FKNN on both datasets under investigation. Moreover, during the evolving process, we
also observe that the convergence speed of TVPSO is faster than that of GA, and GA is more
time-consuming than TVPSO as well. It reflects that TVPSO has stronger search ability than GA
on the tested problems. In addition, it is interesting to see that the standard deviation for the
acquired performance by the PTVPSO-FKNN is much smaller than that of GA-FKNN on both
datasets, which indicates consistency and stability of the proposed model.

<Insert Table 7 here>
<Insert Table 8 here>
<Insert Table 9 here>
<Insert Table 10 here>

To explore how many features and what features are selected during the PSO feature selection

procedure, we attempted to further investigate the detail of the feature selection mechanism of the
PSO algorithm. For simplicity, here we only took the Wieslaw dataset for example. The original
numbers of features of the dataset is 30. As shown in Table 11, not all features are selected for
classification after the feature selection. Furthermore, feature selection has increased the
classification accuracy, as demonstrated in Table 7 and Table 8. The average number of selected
features by PTVPSO-FKNN is 15.3, and its most important features are C/CL(X1), C/TA(X2),
CA/TA(X4), WC/TA(X5), S/I(X7), NP/TA(X9), S/R2(X16), S/CA(X18), S/TA2(X20), R/L(X23),
L/TA(X25) and LTL/E(X27), which can be found in the frequency of the selected features of

10-fold CV as shown in Fig. 4. Note that the important features (financial ratios) selected by the
proposed model are indeed important from the knowledge perspective also as they are related to
current liabilities and long term liabilities, current assets, shareholders’ equity and cash, sales,
inventory, working capital, net profit, receivables, liabilities, total assets.

<Insert Table 11 here>
<Insert Fig.4 here>
<Insert Fig.5 here>

To observe the evolutionary process in PTVPSO-FKNN, Fig. 5 shows the evolution of the best

fitness for fold 1# within 10-fold CV on the Wieslaw dataset. It should be noted that these results
are calculated based on the global best positions, namely, the fitness of all the local best positions
on the training set are calculated to obtain the best fitness of the population in each generation.
The evolutionary processes are quite interesting. It can be observed that the fitness curves
gradually improved from iteration 1 to 130 and exhibited no significant improvements after
iteration 22, eventually stopped at the iteration 130 where the particles reached the stopping
criterion (100 successively same gbest values). The fitness increase rapidly in the beginning of the
evolution, after certain number of generations, it starts increasing slowly. During the latter part of
the evolution, the fitness keeps stability until the stopping criterion is satisfied. This demonstrates
that PTVPSO-FKNN can converge quickly toward the global optima, and fine tune the solutions
very efficiently. The phenomenon illustrates the effectiveness of PTVPSO-FKNN in
simultaneously evolving the parameters (k and m) and the features through using the TVPSO
algorithm.

5.3 Experiment III: Comparison between the Parallel TVPSO-FKNN Model and the
Serial One

In order to reduce further the running time of the serial TVPSO-FKNN model, we implemented
the TVPSO-FKNN model in a parallel environment. To validate the efficiency of the parallel
version, here we attempted to compare the performance of the PTVPSO-FKNN with that of
TVPSO-FKNN. Table 12 reports the average results of Type I error, Type II error, AUC, ACC and
computational time in seconds via 10-fold CV using two models on the two datasets. It can be
seen that PTVPSO-FKNN and TVPSO-FKNN give almost the same results on both datasets,
minor difference between the parallel model and the serial one is attributed to different partitions
of the data are chosen when perform different folds within 10-fold CV. Thus, it verifies the
correctness of the parallel design and implementation.

<Insert Table 12 here>
<Insert Fig.6 here>

As shown in the Table 12, it can be seen that the average training time within the 10-fold CV for

the TVPSO-FKNN was about 3.2 times that of the PTVPSO-FKNN on the Wieslaw dataset, while
about 3.3 times that of PTVPSO-FKNN on the Australian dataset. Moreover, the average CPU
time spent by the two methods within 10-fold CV has been presented in Fig.6. It can be observed
that PTVPSO-FKNN cost much fewer CPU time than TVPSO-FKNN on each fold of the dataset.

It indicates that the TVPSO-FKNN has benefited a great deal from the parallel implementation
with respect to the computational time. It is worth noticing that here only a quad-core processor is
used in this experiment, thus the computational time will be further reduced with increase of the
cores.

6 Conclusions and Future work
This study provides a novel model for bankruptcy prediction. The main novelty of this model is

in the proposed TVPSO-based approach, which aims at aiding the FKNN classifier to achieve the
maximum classification performance. On the one hand, the continuous TVPSO is employed to
adaptively specify the two important parameters k and m of the FKNN classifier. On the other
hand, the binary TVPSO is adopted to identify the most discriminative features. Moreover, both
the continuous and binary TVPSO are implemented in a parallel environment to reduce further the
computational time. The experimental results demonstrate that the developed model performs
significantly better than the other five state-of-the-art classifiers (KNN, SVM, BPNN, PNN and
ELM) in financial application field in terms of Type I error, Type II error, ACC and AUC on two
real-life cases. In addition, the experiment reveals that the PTVPSO-FKNN is also a powerful
feature selection tool which has detected a subset of best discriminative financial ratios that are
really important from the knowledge perspective. Last but not least, the proposed model computes
rather efficiently owing to the high performance computing technology.

Hence, it can be safely concluded that, the developed PTVPSO-FKNN model can serve as a
promising alternative early warning system in financial decision-making. Meanwhile, we should
note that the proposed model does perform efficiently on the data at hand; however, it is not
obvious that the parallel algorithm will lead to significant improvement when applying to the
financial data with larger instances. Future investigation will pay much attention to evaluating the
proposed model in the larger datasets.

7 Acknowledgements
 This research is supported by the National Natural Science Foundation of China (NSFC)

under Grant Nos. 60873149, 60973088, 60773099 and the National High-Tech Research and
Development Plan of China under Grant Nos. 2006AA10Z245, 2006AA10A309. This work is
also supported by the Open Projects of Shanghai Key Laboratory of Intelligent Information
Processing in Fudan University under the Grant No. IIPL-09-007, the Open Project Program of the
National Laboratory of Pattern Recognition (NLPR) and the basic scientific research fund of
Chinese Ministry of Education.

References
[1]. Beaver, W.H., Financial ratios as predictors of failure. Journal of Accounting Research, 1966. 4: p.

71-111.
[2]. Altaian, E.I., Financial ratios, discriminant analysis and the prediction of corporate bankruptcy.

Journal of Finance, 1968. 23(4): p. 589-609.
[3]. Ohlson, J.A., Financial ratios and the probabilistic prediction of bankruptcy. Journal of

Accounting Research, 1980: p. 109-131.
[4]. West, R.C., A factor-analytic approach to bank condition. Journal of Banking & Finance, 1985.

9(2): p. 253-266.

[5]. Odom, M.D. and R. Sharda. A neural network model for bankruptcy prediction. in: Proceedings of
the IEEE International Joint Conference on Neural Networks. San Diego, CA, 2, pp. 163–168.
1990.

[6]. Wilson, R.L. and R. Sharda, Bankruptcy prediction using neural networks. Decision Support
Systems, 1994. 11(5): p. 545-557.

[7]. Atiya, A.F., Bankruptcy prediction for credit risk using neural networks: Asurvey and new results.
IEEE Transactions on neural networks, 2001. 12(4): p. 929-935.

[8]. Tsai, C.F., Financial decision support using neural networks and support vector machines. Expert
Systems, 2008. 25(4): p. 380-393.

[9]. Zhang, G., Artificial neural networks in bankruptcy prediction: General framework and
cross-validation analysis. European Journal of Operational Research, 1999. 116(1): p. 16-32.

[10]. Leshno, M. and Y. Spector, Neural network prediction analysis: The bankruptcy case.
Neurocomputing, 1996. 10(2): p. 125-147.

[11]. P. Ravisankar, V. Ravi, Financial distress prediction in banks using Group Method of Data
Handling neural network, counter propagation neural network and fuzzy ARTMAP.
Knowledge-Based Systems, 2010. 23(8), p. 823-831.

[12]. McKee, T.E. A mathematically derived rough set model for bankruptcy prediction. 1998. In
Brown, C.E. (Ed.), Collected Papers of the Seventh Annual Research Workshop on Artificial
Intelligence and Emerging Technologies in Accounting, Auditing and Tax, Artificial
Intelligence/Emerging Technologies Section of the American Accounting Association.

[13]. McKee, T.E. and T. Lensberg, Genetic programming and rough sets: A hybrid approach to
bankruptcy classification. European Journal of Operational Research, 2002. 138(2): p. 436-451.

[14]. Dimitras, A.I., R. Slowinski, R. Susmaga, and C. Zopounidis, Business failure prediction using
rough sets. European Journal of Operational Research, 1999. 114(2): p. 263-280.

[15]. Shin, K.S., T.S. Lee, and H.J. Kim, An application of support vector machines in bankruptcy
prediction model. Expert Systems with Applications, 2005. 28(1): p. 127-135.

[16]. Min, J.H. and Y.C. Lee, Bankruptcy prediction using support vector machine with optimal choice
of kernel function parameters. Expert Systems with Applications, 2005. 28(4): p. 603-614.

[17]. Fengyi Lin, Ching-Chiang Yeh, Meng-Yuan Lee, The use of hybrid manifold learning and support
vector machines in the prediction of business failure. Knowledge-Based Systems, 2011. 24(1): p.
95-101.

[18]. Yip, A.Y.N. Predicting business failure with a case-based reasoning approach. in: M.G. Negoita,
R.J. Howlett, L.C. Jain (Eds.), Knowledge-Based Intelligent Information and Engineering
Systems: 8th International Conference, KES 2004, Wellington, New Zealand, September
3215/2004, Proceedings, Part III, 2004, pp. 20–25.

[19]. Park, C.-S. and I. Han, A case-based reasoning with the feature weights derived by analytic
hierarchy process for bankruptcy prediction. Expert Systems with Applications, 2002. 23(3): p.
255-264.

[20]. Bian, H. and L. Mazlack Fuzzy-rough nearest-neighbor classification approach.22nd International
Conference of the North American Fuzzy Information Processing Society (NAFIPS 2003)
Proceedings Chicago, 2003. p. 500–505.

[21]. Sarkar, S. and R.S. Sriram, Bayesian models for early warning of bank failures. Management
Science, 2001. 47(11): p. 1457-1475.

[22]. Sun, L. and P.P. Shenoy, Using Bayesian networks for bankruptcy prediction: Some

methodological issues. European Journal of Operational Research, 2007. 180(2): p. 738-753.
[23]. Tolga Ayd n, Halil Altay G venire, Modeling interestingness of streaming association rules as a

benefit-maximizing classification problem. Knowledge-Based Systems, 2009. 22(1):p.85-99.
[24]. Juan L. Castro, Maria Navarro, Jos M. S nchez, Jos M. Zurita, Introducing attribute risk for

retrieval in case-based reasoning. Knowledge-Based Systems, 2011. 24(2): p.257-268.
[25]. Verikas, A., Z. Kalsyte, M. Bacauskiene, and A. Gelzinis, Hybrid and ensemble-based soft

computing techniques in bankruptcy prediction: a survey. Soft Computing, 2010. 14(9): p.
995-1010.

[26]. Kumar, P.R. and V. Ravi, Bankruptcy prediction in banks and firms via statistical and intelligent
techniques - A review. European Journal of Operational Research, 2007. 180(1): p. 1-28.

[27]. Keller, J.M., M.R. Gray, and J.A. Givens, A fuzzy k-nearest neighbours algorithm. IEEE Trans.
Syst. Man Cybern, 1985. 15(4): p. 580-585.

[28]. Sim, J., S.Y. Kim, and J. Lee, Prediction of protein solvent accessibility using fuzzy k-nearest
neighbor method. Bioinformatics, 2005. 21(12): p. 2844.

[29]. Huang, Y. and Y. Li, Prediction of protein subcellular locations using fuzzy k-NN method.
Bioinformatics, 2004. 20(1): p. 21-28.

[30]. Zhang, T.L., Y.S. Ding, and K.C. Chou, Prediction protein structural classes with pseudo-amino
acid composition: approximate entropy and hydrophobicity pattern. Journal of theoretical biology,
2008. 250(1): p. 186-193.

[31]. Liao, T.W. and D. Li, Two manufacturing applications of the fuzzy K-NN algorithm. Fuzzy Sets
and Systems, 1997. 92(3): p. 289-304.

[32]. Yu, S., S. De Backer, and P. Scheunders, Genetic feature selection combined with composite fuzzy
nearest neighbor classifiers for hyperspectral satellite imagery. Pattern Recognition Letters, 2002.
23(1-3): p. 183-190.

[33]. Bian, H. and L. Mazlack. Fuzzy-rough nearest-neighbor classification approach. in: 22nd
International Conference of the North American Fuzzy Information Processing Society (NAFIPS
2003) Proceedings Chicago, 2003, pp. 500–505.

[34]. Tsai, C.F., Feature selection in bankruptcy prediction. Knowledge-Based Systems, 2009. 22(2): p.
120-127.

[35]. Min, S.H., J. Lee, and I. Han, Hybrid genetic algorithms and support vector machines for
bankruptcy prediction. Expert Systems with Applications, 2006. 31(3): p. 652-660.

[36]. Ravi, V. and C. Pramodh, Threshold accepting trained principal component neural network and
feature subset selection: Application to bankruptcy prediction in banks. Applied Soft Computing,
2008. 8(4): p. 1539-1548.

[37]. du Jardin, P., Predicting bankruptcy using neural networks and other classification methods: The
influence of variable selection techniques on model accuracy. Neurocomputing. 73(10-12): p.
2047-2060.

[38]. Guyon, I. and A. Elisseeff, An introduction to variable and feature selection. The Journal of
Machine Learning Research, 2003. 3: p. 1157-1182.

[39]. Trabelsi, A. and A. Esseghir Mohamed, New Evolutionary Bankruptcy Forecasting Model Based
on Genetic Algorithms and Neural Networks, in Proceedings of the 17th IEEE International
Conference on Tools with Artificial Intelligence. 2005, p.241-245.

[40]. Back, B., T. Laitinen, and K. Sere, Neural networks and genetic algorithms for bankruptcy
predictions. Expert Systems with Applications, 1996. 11(4): p. 407-413.

[41]. Ignizio, J.P. and J.R. Soltys, Simultaneous design and training of ontogenic neural network
classifiers. Computers & Operations Research, 1996. 23(6): p. 535-546.

[42]. Chen, L.H. and H.D. Hsiao, Feature selection to diagnose a business crisis by using a real
GA-based support vector machine: An empirical study. Expert Systems with Applications, 2008.
35(3): p. 1145-1155.

[43]. Wu, C.H., G.H. Tzeng, Y.J. Goo, and W.C. Fang, A real-valued genetic algorithm to optimize the
parameters of support vector machine for predicting bankruptcy. Expert Systems with
Applications, 2007. 32(2): p. 397-408.

[44]. Yi-Chung, H., Incorporating a non-additive decision making method into multi-layer neural
networks and its application to financial distress analysis. Know.-Based Syst., 2008. 21(5): p.
383-390.

[45]. Yi-Chung, H. and T. Fang-Mei, Functional-link net with fuzzy integral for bankruptcy prediction.
Neurocomput., 2007. 70(16-18): p. 2959-2968.

[46]. Eberhart, R.C. and J. Kennedy. A new optimizer using particle swarm theory. in: Sixth
international symposium on micro machine and human science, Nagoya, pp 39–43. 1995.

[47]. Chapman, B., G. Jost, and R. Van der Pas, Using OpenMP: portable shared memory parallel
programming. 2007: The MIT Press.

[48]. Kennedy, J. and R.C. Eberhart. Particle swarm optimization. in: Proceedings of the IEEE
International Conference on Neural Network, vol. 4, 1995, pp. 1942–1948.

[49]. Eberhart, R.C. and Y. Shi. Particle swarm optimization: developments, applications and resources.
in: Proceedings of 2001 Congress on evolutionary computation,vol.1 2001,pp.81-86.

[50]. Shi, Y. and R. Eberhart. A modified particle swarm optimizer. in Proceedings of the IEEE
international conference on evolutionary computation, Piscataway, NJ (1998). p. 69–73.

[51]. Shi, Y. and R.C. Eberhart. Empirical study of particle swarm optimization. 1999: Congress on
evolutionary computation, Washington D.C., USA, pp 1945–1949.

[52]. Ratnaweera, A., S. Halgamuge, and H. Watson, Self-organizing hierarchical particle swarm
optimizer with time-varying acceleration coefficients. IEEE transactions on Evolutionary
Computation, 2004. 8(3): p. 240-255.

[53]. Kennedy, J. and R.C. Eberhart. A discrete binary version of the particle swarm algorithm.
in:Proceedings of IEEE conference on systems, man and cybernetics.1997, p .4104–4108.

[54]. Wieslaw, P., Application of discrete predicting structures in an early warning expert system for
financial distress. 2004, Ph. D. Thesis. Szczecin: Szczecin Technical University.

[55]. Pietruszkiewicz, W. Dynamical systems and nonlinear Kalman filtering applied in classification.
7th IEEE International Conference on Cybernetic Intelligent Systems, 2008, p.1-6.

[56]. Duda, R.O., P.E. Hart, and D.G. Stork, Pattern classification. 2001: Wiley, New York,2001.
[57]. Hsu, C.W., C.C. Chang, and C.J. Lin, A practical guide to support vector classification. 2003,

Technical report, Department of Computer Science and Information Engineering, National Taiwan
University, Taipei, 2003. available at http://www.csie.ntu.edu.tw/cjlin/libsvm/.

[58]. Salzberg, S.L., On comparing classifiers: Pitfalls to avoid and a recommended approach. Data
mining and knowledge discovery, 1997. 1(3): p. 317-328.

[59]. Statnikov, A., I. Tsamardinos, Y. Dosbayev, and C.F. Aliferis, GEMS: A system for automated
cancer diagnosis and biomarker discovery from microarray gene expression data. International
Journal of Medical Informatics, 2005. 74(7-8): p. 491-503.

[60]. Vapnik V.N., The nature of statistical learning theory. 1995:Springer, New York,1995.

[61]. Huang, G.-B., Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine: Theory and applications,”
Neurocomputing, 2006. 70(1–3), p. 489–501.

[62]. Chang, C.C. and Lin, C.J, LIBSVM: a library for support vector machines. 2001, Software
available at http://www.csie.ntu.edu.tw/cjlin/libsvm.

[63]. Fawcett, T., An introduction to ROC analysis. Pattern recognition letters, 2006. 27(8): p. 861-874.

Figure Captions:
Fig.1. Flowchart of the TVPSO-FKNN model
Fig.2. Parallel architecture of the PTVPSO-FKNN model
Fig.3. Two-dimensional distribution of the two classes (bankrupt and non-bankrupt) in the
subspace formed by the best couple of features obtained with the PCA algorithm
Fig.4. The frequency of the selected features via 10-fold CV on the Wieslaw dataset
Fig.5. The best fitness during the training stage for fold #1 on the Wieslaw dataset
Fig.6. The average CPU time costs of two models via 10-fold CV on the Wieslaw dataset and
Australian dataset (The legend TVPSO-FKNN-WIE and PTVPSO-FKNN-WIE represent the
serial model and the parallel model performing on the Wieslaw dataset respectively,
TVPSO-FKNN-AUS and PTVPSO-FKNN-AUS represent the serial model and the parallel model
performing on the Australian dataset respectively).

Table Captions:
Table 1 The description of the Wieslaw dataset
Table 2 Confusion matrix for bankruptcy prediction
Table 3 The ACC, Type I error, Type II error and AUC achieved by different classifiers on the
Wieslaw dataset

Table 4 The ACC, Type I error, Type II error and AUC achieved by different classifiers on the
Australian dataset
Table 5 The detailed results obtained by TVPSO-FKNN via 10-fold CV on the Wieslaw dataset
Table 6 The detailed results obtained by TVPSO-FKNN via 10-fold CV on the Australian dataset
Table 7 Experimental results of PTVPSO-FKNN with and without feature selection (%) on the
Wieslaw dataset
Table 8 Experimental results of PTVPSO-FKNN with and without feature selection (%) on the
Australian dataset
Table 9 Experimental results of PTVPSO-FKNN vs. GA-FKNN (%) on the Wieslaw dataset
Table 10 Experimental results of PTVPSO-FKNN vs. GA-FKNN (%) on the Australian dataset
Table 11 The subset of features selected by PTVPSO-FKNN via 10-fold CV on the Wieslaw
dataset
Table 12 The performance of PTVPSO-FKNN and TVPSO-FKNN

	KNOSYS-D-10-00470R2.pdf

