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Abstract

Discriminant information (DI) plays a critical role in face recognition. In this
paper, we proposed a Second Order Discriminant Tensor Subspace Analysis
(DTSA) algorithm to extract discriminant features from the intrinsic mani-
fold structure of the tensor data. DTSA combines the advantages of previous
methods with DI, the tensor methods preserving the spatial structure infor-
mation of the samples original image matrices, and the manifold methods
preserving the local structure of the samples distribution. DTSA defines two
similarity matrices, namely within-class similarity matrix and between-class
similarity matrix. The within-class similarity matrix is determined by the
distances of point pairs in the same class, while the between-class similarity
matrix is determined by the distances between the means of each pair of
classes. Using these two matrices, the proposed method preserves the local
structure of the samples to fit the manifold structure of facial images in high
dimensional space better than other methods. Moreover, compared to the
2D methods, the tensor based method employs two-sided transformation-
s rather than single-sided one, and yields higher compression ratio. As a
tensor method, DTSA uses an iterative procedure to calculate the optimal
solution of two transformation matrices. In this paper, we analyzed DTSA’s
connections to 2D-DLPP and TSA, theoretically. The experiments on the
ORL, Yale and YaleB facial databases show the effectiveness of the proposed
method.
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1. Introduction

Automatic facial recognition has been a longstanding challenge in the
field of computer vision and pattern recognition for several decades. Feature
extraction is one of the central issues for face recognition. Subspace trans-
formation (ST) is often used as a feature extraction method. The idea of
ST is to project the feature from the original high dimensional space to a
low dimensional subspace, which is called projective subspace. In the projec-
tive subspace, the transformed feature is easier to be distinguished than the
original one.

As one of the widely used linear STs, Principal Component Analysis
(PCA)[1] seeks the optimal projection directions according to maximal vari-
ances. Linear Discriminant Analysis (LDA)[2] uses DI to search for the di-
rections which are most effective for discrimination by maximizing the ratio
between the between-class and within-class scatters. Both PCA and LDA
aim to preserve global structures of the samples. Seung[3] assumed that the
high dimensional visual image information in real world lies on or is close to
a smooth low dimensional manifold. Inspired by this assumption, multiple
manifold STs that preserve local structure of samples have been proposed.
Locality Preserving Projections (LPP)[4] aims to preserve the local structure
of the original space in the projective subspace. Its performance is better
than those of PCA and LDA for face recognition[5]. Discriminant Locality
Preserving Projections (DLPP)[6] encodes DI into LPP to further improve
the discriminant performance of LPP for face recognition. Some other DLPP
related works can be found in [7][8][9][10].

The potential shortage of the above methods is that they are one di-
mensional STs (1D-STs), which vectorize a facial image of size m by n to
a (m × n)-dimensional vector. For example, the corresponding vector of a
32 × 32 pixels image is 1024 dimension. In practice, the 1D-STs applied on
the 2D images have been found to have some intrinsic problems: singularity
of within-class scatter matrices, limited available projection directions, high
computational cost and a loss of the underlying spatial structure information
of the images.

To overcome the above problems, some researchers have attempted to
treat the image as a matrix instead of a vector. Yang et al.[11] proposed

2



a 2D-PCA algorithm to compute the image scatter matrix from the image
matrix representations directly. Li and Yuan[12] presented a 2D-LDA to
extend LDA using the idea of the image matrix representations. Chen et
al.[13] developed a 2D-LPP which directly extracts the proper features from
image matrix representations by preserving the local structure of samples.
Xu et al.[14] used DI to construct the adjacency graph based on 2D-LPP.
And Yu developed [15] a 2D-DLPP, a variation of 2D-LPP which uses DI.
2D-LPP and 2D-DLPP achieved better results in recognizing face, facial
expression[16], gait[17], and palm[18] than the methods preserving the glob-
al structure of samples such as 2D-PCA, 2D-LDA. These 2D-STs (two di-
mensional ST) not only reduce the complexities of time and space, but also
preserve spatial structure information of the 2D images.

However, one disadvantage of 2D-STs (compared to 1D-STs) is that there
are still more feature coefficients needed to represent an image, due to the
fact that 2D-STs only employ single-sided transformations. Recently, the
tensor STs, which employ two-sided transformation for a gray image, attract
more attention in the field of feature extraction and dimension reduction,
since many objects can be represented by multidimensional arrays, i.e. ten-
sors. The number of dimensions is called the order of the tensor and each
dimension defines one of the so-called modes. For example, a gray image is
a second-order tensor, then its rows are called mode-1 of the tensor and its
columns are called mode-2 of the tensor.

For 2nd-order tensor, Ye[19][20] proposed the generalized low-rank ap-
proximations of matrices (GLRAM) method. GLRAM was reported to con-
sume less computation time and yield higher compression ratio than SVD
in applications such as image compression and retrieval. He et al.[21] pro-
posed a algorithm, Tensor Subspace Analysis (TSA), which preserves the
local structure of samples using two-sided transformations. For Nth-order
tensor, Liu et al.[22] extended PCA from vector to tensor. In order to en-
code the DI into the tensor subspace, GTDA[23] and DATER[24] extended
LDA and MSD[25] from vector to tensor, respectively. These algorithms are
summarized in Figure 1.

Most of the above existing algorithms are unified into a general graph
embedding framework proposed by Yan et al. [26]. And a new supervised
ST algorithm MFA (Marginal Fisher Analysis) was proposed by them under
this framework as well. Recently, some new ST algorithms[27][28][29][15]
were also developed by using the framework. In this paper, we follow the
framework provided by Yan and propose a new ST algorithm.
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Figure 1: The classical STs are summarized.
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Limiting the recognition tasks to gray-scale facial images, we only consider
2nd-order tensor in this paper. Inheriting the merits from TSA and 2D-
DLPP, a novel method which is called Second Order Discriminant Tensor
Subspace Analysis (DTSA) is proposed in this paper. Its advantages include:

1. The DI can further improve recognition performance.

2. More spatial information of the images are preserved by presenting
the image as a matrix and higher compression ratios with the use of
two-sided transformations.

3. Local structure of samples distribution is preserved.

The rest of this paper is organized as follows: in Section 2, we give related
definitions and a brief review of 2D-DLPP and TSA; in Section 3, we will in-
troduce the Second Order Discriminant Tensor Subspace Analysis and reveal
its connections to 2D-DLPP and TSA, theoretically; in Section 4, the exper-
imental results are reported and analyzed; finally in Section 5, conclusions
are drawn and several issues for future works are described.

2. Related Works

In this section, we give definitions of ST and a brief review of 2D-DLPP
and TSA algorithms.

2.1. Definitions of ST

With DI, we have a set X consisting of N samples coming from C classes:

X =
{
X1

1,X
1
2, . . . ,X

1
N1
,X2

1,X
2
2, . . . ,X

2
N2
, . . . ,XC

1 ,X
C
2 , . . . ,X

C
NC

}
(1)

where Xc
i ∈ RI1×I2 means the ith sample in the cth class. Nc is the number

of samples in the cth class, and N1+N2+ . . .+NC = N is satisfied. Without
DI, Eq. (1) simplifies to

X = {X1,X2, . . . ,XN} (2)

The task of the ST is to seek a transformation mapping:

Xi → Yi (3)

such that the projected pointYi is easier to be distinguished in the projective
subspace.

With DI, we define two similarity matrices Wc and B.
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Definition 1. In the within-class similarity matrix of cth class Wc, each
entry W c

ij is the similarity between the samples Xc
i and Xc

j, and it is defined
as: W c

ij = exp(−∥Xc
i −Xc

j∥2F/t), where ∥ · ∥ is the Frobenius norm of matrix,

i.e. ∥A∥F =
√∑

i

∑
j A

2
ij. Similarly, in the between-class similarity matrix

B, each entry Bij is the similarity between the mean samples Xi and Xj,

and it is defined as: Bij = exp(−∥Xi −Xj∥2F/t), where Xi =
1
Ni

∑Ni

k=1X
i
k.

Definition 2. For every Wc, there is a corresponding diagonal matrix Dc,
Dc

ii =
∑

j W
c
ij. Then, Lc = Dc − Wc is a laplacian matrix. Therefore, we

define total within-class laplacian matrix L as:

L =


L1

. . .

Lc

. . .

LC

 (4)

L is a real symmetric matrix. Similarly, we can also define between-class
laplacian matrix H: H = E − B, where E is a diagonal matrix, and its
entries are column (or row, since B is symmetric) sum of B, Eii =

∑
j Bij.

Here, H is also a real symmetric matrix.

Theorem 1. L is semi-positive definite.

Proof. Lc is a Laplacian matrix. According to the properties of Laplacian
matrix[30], Lc is real symmetric and semi-positive definite. So, Lc can be
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decomposed as Lc = (Sc)TSc.

L =


L1

. . .

Lc

. . .

LC



=


(S1)TS1

. . .

(Sc)TSc

. . .

(SC)TSC



=


S1

. . .

Sc

. . .

SC



T 
S1

. . .

Sc

. . .

SC



(5)

So, L is semi-positive definite.

To better understand the following algorithms, a theorem is given:

Theorem 2. Suppose a set of N matrices Xi ∈ RI1×I2 and a matrix W ∈
RN×N , then we have:

N∑
i,j=1

WijX
T
i Xj

=
[
XT

1 ,X
T
2 , · · · ,XT

N

]
(W ⊗ II1)


X1

X2
...

XN


(6)

where operator ⊗ is the Kronecher product of the matrices and II1 is an
identity matrix of order I1.
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Proof.

[
XT

1 ,X
T
2 , · · · ,XT

N

]
(W ⊗ II1)


X1

X2
...

XN



=
[
XT

1 ,X
T
2 , · · · ,XT

N

]


W11 ⊗ II1 W12 ⊗ II1 · · · W1N ⊗ II1
W21 ⊗ II1 W22 ⊗ II1 · · · W2N ⊗ II1

...
...

. . .
...

WN1 ⊗ II1 WN2 ⊗ II1 · · · WNN ⊗ II1




X1

X2
...

XN



=

[
N∑
i=1

XT
i Wi1 ⊗ II1 ,

N∑
i=1

XT
i Wi2 ⊗ II1 , · · · ,

N∑
i=1

XT
i WiN ⊗ II1

]
X1

X2
...

XN



=

[
N∑
i=1

XT
i Wi1,

N∑
i=1

XT
i Wi2, · · · ,

N∑
i=1

XT
i WiN

]
X1

X2
...

XN


=

N∑
i,j=1

WijX
T
i Xj

2.2. Two-dimensional discriminant locality preserving projections (2D-DLPP)

2D-DLPP is a 2D-ST with DI. In this case, Eq. (3) can be specified as:

Yc
i = Xc

iV, i = 1, 2, . . . , Nc, c = 1, 2, . . . , C. (7)

where V ∈ RI2×L2 (L2 ≤ I2) is the transformation matrix. Given N samples,
the objective function of 2D-DLPP is defined as:

max
V

C∑
i,j=1

∥Yi −Yj∥2FBij

C∑
c=1

Nc∑
i,j=1

∥Yc
i −Yc

j∥2FW c
ij

(8)
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where Yi =
1
Ni

∑Ni

k=1Y
i
k. Subject Eq. (7) to objective function (8), then we

can have the following equation:

max
V

C∑
i,j=1

∥XiV −XjV∥2FBij

C∑
c=1

Nc∑
i,j=1

∥Xc
iV −Xc

jV∥2FW c
ij

(9)

By maximizing the numerator of the above objective function, the pro-
jected points Yi and Yj move far away from each other if their corresponding
mean samples of two classes Xi and Xj are close. In the opposite manner,
the distance of feature points Yc

i and Yc
j keeps close if their original samples

of the class Xc
i and Xc

j are close by minimizing the denominator of objective
function. It is easy to observe that the optimal solution of objective func-
tion is obtained by maximizing the between class distance and minimizing
the within class distance. Thus, by utilizing the DI, 2D-DLPP has better
performance than 2D-LPP for recognition.

According to [15], the denominator of Eq. (9) can be simplified as:

1

2

C∑
c=1

Nc∑
i,j=1

∥Xc
iV −Xc

jV∥2FW c
ij = tr

[
VTXT (L⊗ II1)XV

]
(10)

where

Xc =


Xc

1

Xc
2
...

Xc
Nc

 (11)

and

X =


X1

X2

...
XC

 (12)

Similarly, the numerator of Eq. (9) can be simplified as:

1

2

C∑
i,j=1

∥XiV −XjV∥2FBij = tr
[
VTX

T
(H⊗ II1)XV

]
(13)
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where

X =


X1

X2
...

XC

 (14)

Subject Eqs. (10) and (13) to (9), the objective function can be simplified
as:

max
V

tr
[
VTX

T
(H⊗ II1)XV

]
tr [VTXT (L⊗ II1)XV]

= max
V

tr
(
VTSHV

)
tr (VTSLV)

(15)

where, SH = X
T
(H⊗ II1)X and SL = XT (L⊗ II1)X. Eq. (15) can be

treated as the following generalized eigenvector problem:

SHV = λSLV (16)

The transformation matrix V consists of the d eigenvectors corresponding to
the d largest eigenvalues.

2.3. Tensor subspace analysis

TSA is a tensor ST without DI. In the case, Eq. (3) can be specified as

Yi = UTXiV (17)

where U ∈ RI1×L1 (L1 ≤ I1) is called left transformation matrix and V ∈
RI2×L2 (L2 ≤ I2) is called right transformation matrix. TSA aims to find a
subspace in which the local structure of samples in manifold can be preserved.
A reasonable transformation respecting to the graph embedding framework
can be obtained by solving the following objective function:

min
U,V

∑
ij

Wij ∥ UTXiV −UTXjV ∥2F (18)

This objective function indicates that the relative distances between the
transformed samples are preserved. Except for preserving the local struc-
ture, TSA improves the separability of different classes by maximizing the
global scatter on the manifold of the projective subspace [21]:

max
U,V

∑
i

Dii ∥ UTXiV ∥2F (19)
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By using simple algebraic transformations, these two properties can be for-
mulized as the two optimization problems:

min
U,V

tr
[
UT (DV −WV )U

]
tr(UTDVU)

(20)

min
U,V

tr
[
VT (DU −WU)V

]
tr(VTDUV)

(21)

whereDV =
∑

iDiiXiVVTXT
i ,WV =

∑
ij WijXiVVTXT

j ,DU =
∑

i DiiX
T
i UUTXi

and WU =
∑

ij WijX
T
i UUTXj. According to the generalized Rayleigh−Ritz

theorem [31], assuming V is fixed, U is calculated according to the following
equation which is a generalized eigenvalue problem:

(DV −WV )u = λDV u (22)

Similarly, assuming U is fixed, the optimal V can be obtained according to:

(DU −WU)v = λDUv (23)

Based on the dependency between Eq. (22) and Eq (23), the optimal U and
V can be calculated using an iterative technique which fixes U initially to
compute the V and uses updated V to calculate the new U repeatedly.

3. Second Order Discriminant Tensor Subspace Analysis

3.1. Problem formulation

Given a set X in Eq. (1), Eq. (3) can be specified as

Yc
i = UTXc

iV, i = 1, 2, . . . , Nc, c = 1, 2, . . . , C. (24)

The task is to learn the two matricesU andV which project those N samples
to a set of the projected points

Y =
{
Y1

1,Y
1
2, . . . ,Y

1
N1
,Y2

1,Y
2
2, . . . ,Y

2
N2
, . . . ,YC

1 ,Y
C
2 , . . . ,Y

C
NC

}
(25)

where Yc
i ∈ RL1×L2 .

Following the idea of 2D-DLPP, we seek U and V such that if the two
samples Xc

i and Xc
j in the same class are close then the corresponding pro-

jected points Yc
i and Yc

j are close as well. A reasonable criterion for the
projection is to minimize the following objective function:

min
C∑
c=1

Nc∑
i,j=1

∥Yc
i −Yc

j∥2FW c
ij (26)
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Additionally, a reasonable criterion for the projection is to maximize the
following objective function:

max
C∑

i,j=1

∥Yi −Yj∥2FBij (27)

By applying multiplicative principle[32], the multiobjective programming
problem (26) and (27) is converted into a single-objective programming prob-
lem:

max
U,V

C∑
i,j=1

∥Yi −Yj∥2FBij

C∑
c=1

Nc∑
i,j=1

∥Yc
i −Yc

j∥2FW c
ij

(28)

3.2. Related Definitions

For the convenience of discussing on the proposed algorithm, we introduce
some definitions.

Definition 3. For the cth class and the left transformation matrix U, we
define the left transformation column matrix of the cth class:

Pc
U =


UTXc

1

UTXc
2

...
UTXc

Nc

 (29)

and the total left transformation column matrix :

PU =


P1

U

P2
U
...

PNc
U

 (30)

Similarly, for the mean value of each class Xc (c = 1, 2, . . . , C), we define
mean left transformation column matrix

QU =


UTX1

UTX2
...

UTXNc

 (31)
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Definition 4. For the cth class and the right transformation matrix V, we
define the right transformation row matrix of the cth class:

Pc
V =

[
Xc

1V,Xc
2V, . . . ,Xc

Nc
V
]

(32)

and the total right transformation row matrix :

PV =
[
P1

V ,P
2
V , . . . ,P

Nc
V

]
(33)

Similarly, for the mean value of each Xc (c = 1, 2, . . . , C), we define mean
right transformation row matrix

QV =
[
X1V,X2V, . . . ,XNcV

]
(34)

3.3. DSTA Algorithm

Since the projection onto a second-order tensor subspace consists of two
projection matrices, two optimization subproblems can be solved by finding
U and V such that minimizes Eq. (28).

Theorem 3. Let U and V be the solutions to Eq. (28). For a given U,
the matrix V consists of the L2 generalized eigenvectors corresponding to
the largest L2 generalized eigenvalues of the matrix pencil (SU

H ,S
U
L), where

SU
H = QT

U(H⊗ IL1)QU , S
U
L = PT

U(L⊗ IL1)PU .

Proof. Since ∥A∥2F = tr(ATA) and Theorem 2, the denominator of Eq.
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(28) can be simplified as:

1

2

C∑
c=1

Nc∑
i,j=1

∥Yc
i −Yc

j∥2FW c
ij

=
1

2

C∑
c=1

Nc∑
i,j=1

tr
[
(Yc

i −Yc
j)

T (Yc
i −Yc

j)
]
W c

ij

= tr

[
1

2

C∑
c=1

Nc∑
i,j=1

(UTXc
iV −UTXc

jV)T (UTXc
iV −UTXc

jV)W c
ij

]

= tr

{
VT

[
1

2

C∑
c=1

Nc∑
i,j=1

(UTXc
i −UTXc

j)
T (UTXc

i −UTXc
j)W

c
ij

]
V

}

= tr

{
VT

{
C∑
c=1

Nc∑
i,j=1

[
(UTXc

i)
T
UTXc

i − (UTXc
i)

T
UTXc

j

]
W c

ij

}
V

}

= tr

{
VT

{
C∑
c=1

[
Nc∑
i=1

(UTXc
i)

T
UTXc

i

Nc∑
j=1

W c
ij −

Nc∑
i,j=1

(UTXc
i)

T
UTXc

jW
c
ij

]}
V

}

= tr

{
VT

{
C∑
c=1

[
(Pc

U)
T (Dc ⊗ IL1)P

c
U − (Pc

U)
T (Wc ⊗ IL1)P

c
U

]}
V

}
= tr

{
VTPT

U [(D−W)⊗ IL1 ]PUV
}

= tr
[
VTPT

U (L⊗ IL1)PUV
]

= tr
(
VTSU

LV
)

(35)

According to Theorem 1, L is semi-positive definite. The identity matrix IL1

is semi-positive definite, so L ⊗ IL1 is semi-positive definite. Suppose there
is a real matrix S′, such that L⊗ IL1 = S′TS′.

SU
L = PT

U(L⊗ IL1)PU = PT
U(S

′TS′)PU = (S′PU)
T (S′PU) (36)

Thus, SU
L is semi-positive definite.
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Similarly, the numerator of Eq. (28) can be simplified as:

1

2

C∑
i,j=1

∥Yi −Yj∥2FBij

=
1

2

C∑
i,j=1

tr
[
(Yi −Yj)

T (Yi −Yj)
]
Bij

=
1

2

C∑
i,j=1

tr
[
(UTXiV −UTXjV)T (UTXiV −UTXjV)

]
Bij

=
1

2

C∑
i,j=1

tr
[
VT (UTXi −UTXj)

T (UTXi −UTXj)V
]
Bij

= tr

{
C∑

i,j=1

VT
[
(UTXi)

TUTXi − (UTXi)
TUTXj

]
VBij

}

= tr

{
C∑
i=1

VT

[
(UTXi)

TUTXi

C∑
j=1

Bij

]
V −

C∑
i,j=1

VT (UTXi)
TBijU

TXjV

}
= tr

{
VTQT

U [(E−B)⊗ IL1 ]QUV
}

= tr
[
VTQT

U(H⊗ IL1)QUV
]

= tr
(
VTSU

HV
)

(37)

where SU
H is also semi-positive definite. Therefore, for a given U, the solution

to Eq. (28) can be converted into the following optimal problem about a
variable V:

max
V

tr(VTSU
HV)

tr(VTSU
LV)

(38)

It is easy to see that the optimal V should be the generalized eigenvalues
problem:

SU
Hv = λSU

Lv (39)

the matrix V = [v1,v2, . . . ,vL2 ] consists of the L2 generalized eigenvectors
corresponding to the largest L2 generalized eigenvalues of the matrix pencil
(SU

H ,S
U
L).
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Theorem 4. Let U and V be the solution to Eq. (28). For a given V,
the matrix U consists of the L1 generalized eigenvectors corresponding to
the largest L1 generalized eigenvalues of the matrix pencil (SV

H ,S
V
L ), where

SV
H = QT

V (H⊗ IL2)QV , S
V
L = PT

V (L⊗ IL2)PV .

Proof. The proof is similar to the Theorem 3.

From the above analysis, we see that the optimizations ofU andV depend
on each other. From Theorem 3 and Theorem 4, an iterative procedure can
be utilized to solve Eq. (28), which is summarized in Algorithm 1.

Algorithm 1 DTSA

INPUT: a set of N samples X with DI, the number of reduced dimensions
L1, L2, and the maximum iteration times Tmax

OUTPUT: a set of projected points Y and two transformation matrices
U, V
Algorithm:
initialize U with an identity matrix
Compute the total within-class laplacian matrix L and the between-class
laplacian matrix H according to Definition 2.

for t = 0 to Tmax do
Compute PU and QU by Definition 3.
SU
H = QT

U(H⊗ IL1)QU ; S
U
L = PT

U(L⊗ IL1)PU

the matrix V = [v1,v2, . . . ,vL2 ] consists of the L2 generalized eigen-
vectors corresponding to the largest L2 generalized eigenvalues of the
matrix pencil (SU

H ,S
U
L).

Compute PV and QV according to Definition 4.
SV
H = QT

V (H⊗ IL2)QV ; S
V
L = PT

V (L⊗ IL2)PV

the matrix U = [u1,u2, . . . ,uL1 ] consists of the L1 generalized eigen-
vectors corresponding to the largest L1 generalized eigenvalues of the
matrix pencil (SV

H ,S
V
L ).

end for

Compute a set of projected points Y by using Eq. (24)
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3.4. Feature extraction and classification

A set of features Y are extracted for each sample in X by using Eq. (24).
For a test sample Xtest, similarly, the corresponding projected point Ytest is:

Ytest = UTXtestV (40)

We choose the nearest-neighbor classifier which uses the Euclidean distance
to measure the similarity and identify the target label of each test sample.

d(YtestY
c
i ) = ∥Ytest −Yc

i∥F (41)

The Xtest is assigned to cth class according to its closest class center Yc
i .

3.5. Connections to 2D-DLPP and TSA

In this section, the relations between the proposed algorithm and the 2D-
DLPP or TSA are analyzed. Compared to the 2D-DLPP, DTSA employs
two-sided transformations rather than single-sided one, and yields higher
recognition rate. In Algorithm 1, we fix U as an identity matrix of order I1
and set L1 = I1. Pc

U , PU and QU defined in Definition 3 are equal to Xc

in Eq. (11), X in Eq. (12) and X in Eq. (14), respectively. SU
H and SU

L in
Theorem 3 are equal to SH and SL in Eq. (15), respectively. Consequently,
Eq. (39) is equivalent to Eq. (16). Since U is fixed, U does not need to be
solved using Theorem 4 through iterative procedure. Thus, the solution of
DTSA is the solution of 2D-DLPP.

DTSA is a version of TSA with DI. In DTSA, if there is only one class
such that C = 1 and W = W1, then Eq. (26) becomes Eq. (18) and Eq.
(27) becomes

max ∥Y∥2F (42)

which calculates the maximum value of the mean of new projected features.
However, the scatter of new projected features are maximized in Eq.(19) in
TSA.

4. Experiments and results

4.1. Database and experimental set

Three well-known face database ORL1, Yale2 and the Extended Yale Face
Database B[33] (denoted by YaleB hereafter) were used in our experiments.

1http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
2http://cvc.yale.edu/projects/yalefaces/yalefaces.html
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Figure 2: Sample images of one individual from the ORL database.

Figure 3: Sample images of one individual in the YALE database.

The ORL database collects images from 40 individuals, and 10 different
images are captured for each individual. For each individual, the images
with different facial expressions and details are obtained at different times.
The face in the images may be rotated, scaled and be tilting in some degree.
The sample images of one individual from the ORL database are shown in
Figure 2.

There are total of 165 gray scale images for 15 individuals where each
individual has 11 images in Yale face database. The images demonstrate
variations in lighting condition, facial expression (normal, happy, sad, sleepy,
surprised, and wink). The sample images of one individual from the Yale
database are showed in Figure 3.

The YaleB contains 21888 images of 38 individuals under 9 poses and
64 illumination conditions. A subset containing 2414 frontal pose images
of 38 individuals under different illuminations per individual is extracted.
The sample images of one individual from the YaleB database are showed in
Figure 4.

From each of the face database mentioned above, the image set is parti-
tioned into the different gallery and probe sets. In this paper, the Gm/Pn
indicates that m images per individual are randomly selected for training
and the remaining n images are used for testing. For each partition, we use
50 random splits for cross-validation tests. All images are manually cropped
and resized to two different resolutions, 32 × 32 pixels and 64 × 64 pixels.
These cropped images and random splits can be downloaded from the Web3.

3http://www.zjucadcg.cn/dengcai/Data/FaceData.html
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Figure 4: Sample images of one individual from the YaleB database.
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4.2. Properties of algorithms for ST

In this section, we will investigate the properties of the algorithms in Fig-
ure 1. The properties include time complexity, space complexity and com-
pression. The time and space complexities of the algorithms are illustrated
in Table 1. Data obtained from references are marked correspondingly. For
1D-STs, generally, I1I2 is far greater than the other values. So, their time
and space complexities are dependent on I1I2. For 2D-STs, the time and
space complexities of the methods which are based on preserving the local
structure of samples are O(M2I3) and O(M2I21 ), because of the Kronecher
product. The analysis of the time complexity of DTSA is covered in Sec-
tion 4.4. In Table 1, T is the number of iterations. For some, we assume
I1 = I2 = . . . = IM = I for simplicity.

Table 1: Time and space complexities of algorithms in Figure 1

Algorithms time complexity space complexity

PCA O((I1I2)
3) [34] O((I1I2)

2) [34]

LDA O((I1I2)
3) O((I1I2)

2)

LPP O((I1I2)
3) O((I1I2)

2)

DLPP O((I1I2)
3) O((I1I2)

2)

2D-PCA O(I32 ) [35] O(I1I2)

2D-LDA O(I32 ) O(I1I2)

2D-LPP O(M2I3) O(M2I21 )

2D-DLPP O(M2I3) O(M2I21 )

GLRAM O(T (I1 + I2)
2 max(L1, L2)N) [19] O(I1I2) [19]

TSA O(T (I31 + I32 + N2(I1 × I2)
3
2 )) [36] O(I1I2)

DTSA O(T ((C2 + N2)I3)) O(M2I21 )

MPCA O((M + 1)MNI(M+1) + M · I3) [22] O(
∏M

m=1 Im) [22]

GTDA O(T
∑M

m=1 I3m) [24] O(
∑M

m=1 I3m) [24]

DATER O(T (MIM+1 + MI3)) [23] O(
∑M

m=1 I3m)

In these algorithms, the ones which preserve the global structure of sam-
ples without the DI are also used for the image compression. We investigate
their compressions using the criterion: RMSE versus different values of Com-
pression Ratios (CRs) [37]. The RMSE is defined as follows:

RMSE =

√√√√ 1

M

M∑
i=1

∥Xi − X̃i∥2F X̃iis the reconstruction of Xi (43)

The experiments are implemented using all images in the Yale face database
as the training set to compare their RMSEs at various CRs. CRs is defined
as NI1I2/s with s as the scale factor required to the certain algorithm. Ac-
cording to [19], given a lower dimension d, we have s = d(N + I1I2) for PCA,
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Figure 5: RMSEs vs. various CRs of PCA, 2D-PCA, GLRAM and MPCA on the Yale
database.

s = d(NI1 + I2) for 2D-PCA, and s = d(dN + I1 + I2) for the two tensor
algorithms (GLRAM and MPCA). For clarity, we set the reduced dimension
L2 is d for 2D-PCA, and set L1 = L2 = d for the two tensor algorithms.
Figure 5 plots the RMSE for different CRs. The results show that the two
tensor algorithms produce the best compression performance. And we can
also see better performance of 2D-PCA than PCA.
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4.3. Analysis of Optimal Dimensions

In this section, we discuss the optimal dimensions for three different ten-
sor STs, namely DTSA, TSA4 and GLRAM5. The experiments are conduct-
ed on Yale facial database using the 64 × 64 resolution. Three partitions
(G2/P9,G4/P7,G8/P3 ) are selected and one split is randomly selected from
each partition. The performances of the three algorithms versus their dimen-
sions are shown in Figure 6. As shown in the figure, the best performances
occur on full transformation (L1 = I1, L2 = I2). Following, we use full
transformation to get two full transformation matrices U and V. Then the
optimal dimensions are determined by running over every possible dimen-
sion. The performances versus these dimensions are illustrated in Figure 7.
The optimal dimensions are about 20 for all three algorithms. Experiments
with the same settings are then implemented on the 32×32 resolution as well
and the results are shown in Figure 8. From the figure, we can see that the
optimal dimensions of U and V are both about 10 for the three algorithms.
We can draw a conclusion that the optimal dimensions doubles as the image
resolution doubles. And the best performance occurs in the first one-third of
columns of full transformation matrix.

4.4. Time complexity

In this section, we discuss the time complexities of DTSA and TSA.
Suppose them×pmatrixA and the p×nmatrixB, the matrix multiplication
AB requires about p×m×n floating-point multiplications. Suppose the p×q
matrix M and the m × n matrix N, the Kronecher product of the matrices
M⊗N requires about p× q×m×n floating-point multiplications. For each
iteration of TSA, DV , WV , DU and WU need to be computed, and require
2×N × L1 × I21 , 2×N2 × L1 × I21 , 2×N × L2 × I22 and 2×N2 × L2 × I22
floating-point multiplications, respectively. The costs of UTXi and XiV in
TSA are ignored, because the same costs appear in DTSA as well. In each
iteration of DTSA, SU

H , S
U
L , S

V
H and SV

L need to be computed, and require
C2×L2

1×(2I1+1), N2×L2
1×(2I1+1), C2×L2

2×(2I2+1) andN2×L2
2×(2I2+1)

floating-point multiplications, respectively. Generally, N is far greater than
the other quantities (such as C, I1, I2, L1 and L2). The costs of WV and

4The matlab code can be downloaded from http://www.zjucadcg.cn/dengcai/Data/

data.html
5The matlab code can be downloaded from http://www-users.cs.umn.edu/

~jieping/GLRAM/
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(a) DTSA on G2/P9
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(b) DTSA on G4/P7
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(c) DTSA on G8/P3
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(d) TSA on G2/P9
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(e) TSA on G4/P7
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(f) TSA on G8/P3

0
20

40
60

80

0

20

40

60

80
0

0.2

0.4

0.6

0.8

1

UV

R
ec

og
ni

tio
n 

ac
cu

ra
cy

 (
%

)

(g) GLRAM on G2/P9
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(h) GLRAM on G4/P7
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(i) GLRAM on G8/P3

Figure 6: The performance of three tensor STs vs. the dimensions on 64× 64 resolution
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(a) DTSA on G2/P9
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(b) DTSA on G4/P7
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(c) DTSA on G8/P3
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(d) TSA on G2/P9
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(e) TSA on G4/P7
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(f) TSA on G8/P3
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(g) GLRAM on G2/P9
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(h) GLRAM on G4/P7
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(i) GLRAM on G8/P3

Figure 7: The performance of three tensor STs vs. the dimensions on full transformation
on 64× 64 resolution
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(a) DTSA on G2/P9
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(b) DTSA on G4/P7
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(c) DTSA on G8/P3
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(d) TSA on G2/P9
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(e) TSA on G4/P7
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(f) TSA on G8/P3
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(g) GLRAM on G2/P9
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(h) GLRAM on G4/P7
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(i) GLRAM on G8/P3

Figure 8: The performance of three tensor STs vs. the dimensions on full transformation
on 32× 32 resolution
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Figure 9: Comparison of TSA and DTSA with respect to the time on ORL database.

WU in TSA are equivalent to those of SV
L and SU

L in DTSA. In most cases,
however, N is far greater than C2. So, the cost of TSA is greater than that
of DTSA.

The three face database described above were used to compare the time
complexities between DTSA and TSA. For each database, we run DTSA and
TSA using different sizes of training set. For example, in ORL database, if we
select three images for each subject as training images, we have 120 training
images in total (recall that there are 40 subjects in ORL database). We run
DTSA and TSA in Matlab R2009b on a PC with Intel Xeon E5430 and 16
GB DDR2 memory. For each facial database, we run experiments on the
two resolutions. Figure 9 and Figure 10 show the results in ORL and Yale
database. It is clear that the proposed algorithm is more efficient than TSA.
As the size of training set increases, the curve of TSA grows more rapidly
than DTSA. For databases, such as YaleB, where a relatively large amount
of images is extracted per individual, as the size of training set increases,
the time cost of the proposed method is slightly higher than TSA in 32× 32
resolution. However, in 64 × 64 resolution, the time cost of DTSA is still
lower than TSA. The conclusion can be seen from Figure 11.
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Figure 10: Comparison of TSA and DTSA with respect to the time on Yale database.
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Figure 11: Comparison of TSA and DTSA with respect to the time on YaleB database.

27



Figure 12: The various values of parameters t of DTSA on YALE face database.

4.5. Sensitivity of parameter t

For 2D-LPP, 2D-DLPP, TSA and DTSA, the heat kernel exp(−∥x− y∥2/t)
is used and a value has to be assigned to parameter t. YALE face database
is used to investigate the sensitivity of the parameter t. To compare the
four algorithms, tests for each algorithms are carried out 50 times and the
final performance is obtained by averaging the results of all 50 tests. The
results are illustrated in Figure 12, Figure 13, Figure 14 and Figure 15. As
shown in the four figures, when t > 50, recognition accuracies of these four
algorithms are not sensitive to the parameter t. It can also be found that
the sensitivity of the parameter t is related to the size of the training set. As
the size of the training set increases, the performance is more insensitive to
t. Compared to 2D-LPP and 2D-DLPP, DTSA and TSA are more sensitive
to the parameter t, because of iterations in DTSA and TSA. It is interesting
that, unlike DTSA as shown in the Figure 13, the accuracy of TSA increases
for 2 and 3 training samples while it decreases for others, when t < 20. To
avoid the effects from parameter sensitivity, the parameter t is set as 1000 in
the following experiments.

4.6. The performance of DTSA compared to other algorithms

In this section, we compare the performance of DTSA with other classical
algorithms using the matrix representation. These algorithms are 2D-PCA,
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Figure 13: The various values of parameters t of TSA on YALE face database.

Figure 14: The various values of parameters t of 2D-DLPP on YALE face database.
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Figure 15: The various values of parameters t of 2D-LPP on YALE face database.

2D-LDA, 2D-LPP, 2D-DLPP, DATER, GTDA, GLRAM, TSA and TMFA.
For 2D-LPP, 2D-DLPP, TSA and DTSA, the heat kernel exp(−∥x− y∥2/t)
is used. We use k nearest neighbors to construct the adjacency graph in 2D-
LPP and TSA. The parameter k is set as 12. In TMFA, the two graphs: the
intrinsic graph and the penalty graph need to be constructed using k nearest
neighbors. The parameters k1 and k2 are set to be 12 and 200. For GTDA,
we choose 0.1 for ξ and 0.001 for ϵ. For DATER, ϵ is set as 0.01. There are
10 iterations in GLRAM, TSA, TMFA and DTSA.

The first experiment is implemented on the ORL facial database as de-
scribed in Section 4.1. The maximum average recognition accuracy and the
standard deviation across 50 runs of tests of each algorithm are shown in Ta-
ble 2. The recognition accuracy curve versus the variation in size of training
set is shown in Figure 16.

As we can see in Table 2, in every partition, the performance of DTSA
reaches the top, except for partition G2/P8, where the standard deviation
of DTSA is the smallest. In the situations of smaller size of training set
(G2/P8,G3/P7 and G4/P6 ), the recognition accuracy of DTSA is about 10
percent more than that of TSA. The results are constant with the theoretical
analysis that the PCA subspace without DI is not ideal for face recognition
compared to LDA with DI[6]. For the 4 2D-STs, we see that the methods with
DI outperform the methods without DI and the local methods are superior

30



to corresponding global ones as shown in Figure 16. For the tensor STs, TSA
which preserves the local structure of samples is better than GLRAM which
preserves the global structure of samples. The proposed method DTSA has
DI and preserves the local structure of samples. So it outperforms other
Second Order Tensor methods.

Table 2: Recognition accuracy (%) on ORL database (mean±std)

Partitions 2D-PCA 2D-LDA 2D-LPP 2D-DLPP GLRAM

G2/P8 72.76±2.71 75.67±2.65 72.66±3.02 79.34±3.62 72.00±3.11
G3/P7 80.72±2.25 82.96±2.23 80.13±2.40 87.21±2.28 80.17±2.48
G4/P6 86.09±1.91 88.22±1.78 86.24±1.84 91.37±1.70 85.81±1.93
G5/P5 89.41±2.04 91.61±1.84 89.52±2.19 93.73±1.98 89.23±2.20
G6/P4 91.93±1.88 92.90±1.90 91.91±1.91 94.65±1.55 91.74±1.93
G7/P3 94.02±2.26 94.60±1.99 93.67±2.38 96.60±1.89 93.98±2.46
G8/P2 95.63±1.98 95.63±2.57 95.52±2.14 97.20±1.74 95.58±2.15

Partitions TMFA GTDA DATER TSA DTSA

G2/P8 81.39±3.35 72.16±3.12 81.86±3.40 73.14±3.06 83.76±3.39
G3/P7 90.35±1.97 80.37±2.44 90.36±1.95 80.49±2.59 91.61±1.73
G4/P6 93.79±1.84 86.02±1.92 93.76±1.86 86.83±1.84 94.55±1.52
G5/P5 95.98±1.51 89.40±2.30 96.05±1.55 90.33±1.80 96.68±1.37
G6/P4 96.65±1.32 91.93±1.93 96.95±1.18 92.40±1.75 97.46±1.09
G7/P3 97.20±1.53 94.20±2.47 97.57±1.52 94.47±2.10 98.03±1.16
G8/P2 97.58±1.59 95.70±2.07 98.07±1.43 96.45±1.70 98.60±1.25

Compared to the ORL database, the Yale face database has differen-
t illuminations. The experimental setting is the same as that of the ORL
database. The results are illustrated in Table 3. And Figure 17 shows the
recognition accuracy curves versus the variations of the size of training set.
Two group of methods which preserve the local structure of samples are:
tensor ST denoted by the red lines and 2D-ST denoted by green lines in
Figure 17. Another group of methods which preserve the global structure of
samples are denoted by blue lines. Each group includes 2 algorithms: the
one with DI is denoted by a solid line and the one without DI is represented
by dash-dot line. Other algorithms are denoted by other styles. From Fig-
ure 17, we can see that with smaller size of training set, the performance of
the algorithms with DI is slightly worse than those of methods without DI.
However, with the larger size of the training set, the performance of the algo-
rithms with DI becomes better than those of algorithms without DI. Within
these algorithms, the difference between the recognition accuracy of DTSA
and TSA is the highest amongst the three groups, when the training set size
is the largest. From Table 3, we can see that when the partition is G2/P9,
the recognition accuracy of all algorithms is about 50%. When the partition
is G8/P3, the recognition accuracy of DTSA is 80% and that of the others
are about 70%.
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Figure 16: Recognition accuracy (%) on ORL database (mean).

Table 3: Recognition accuracy (%) on Yale database (mean)

Partitions 2D-PCA 2D-LDA 2D-LPP 2D-DLPP GLRAM

G2/P9 52.16±3.36 51.26±4.20 53.30±4.62 46.64±5.89 51.36±3.06
G3/P8 57.83±3.25 58.10±3.76 58.65±3.05 58.70±4.83 57.03±2.79
G4/P7 60.57±3.01 62.80±4.04 62.23±3.47 63.43±4.16 59.41±3.46
G5/P6 63.56±3.58 65.07±3.41 64.22±3.39 66.16±4.07 63.04±4.05
G6/P5 65.68±3.37 58.59±3.91 66.64±3.76 70.37±4.27 65.01±4.01
G7/P4 66.87±3.91 69.80±4.36 68.00±4.03 71.57±4.48 66.83±5.00
G8/P3 69.33±4.92 72.04±5.16 70.44±5.24 74.27±4.65 68.89±4.94

Partitions TMFA GTDA DATER TSA DTSA

G2/P9 47.87±6.41 51.66±3.68 48.06±6.00 55.24±4.03 52.00±5.60
G3/P8 59.92±4.41 57.82±3.20 60.45±5.12 61.48±4.12 63.47±3.98
G4/P7 65.70±4.33 60.76±3.62 65.68±4.52 63.58±3.49 68.69±3.81
G5/P6 68.69±3.82 64.62±3.88 69.13±4.07 67.22±3.42 71.09±4.31
G6/P5 72.05±4.12 67.47±4.08 72.19±3.83 68.32±3.63 74.21±4.12
G7/P4 73.77±4.49 68.97±3.51 73.90±4.11 70.33±3.79 76.47±3.73
G8/P3 77.42±4.54 71.69±4.83 77.24±3.80 72.31±4.76 80.00±4.11
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Figure 17: Recognition accuracy (%) on Yale database (mean).

Furthermore, we implemented the experiments on the more complex facial
database Yale B. The results are illustrated in Table 4. Figure 18 shows that
the performance of the algorithms with DI is dramatically superior to the
ones without DI on this complex database. Moreover, we can see that the
standard deviation of DTSA is the smallest when the partitions are G20/P40,
G30/P30, G40/P20, G50/P10 from Table 4. Meanwhile, when the partitions
are G30/P30, G40/P20, G50/P10 , the recognition accuracies of TMFA are
higher than those of DATER.

4.7. Discussion

The experiments on three databases have been systematically performed.
Their results reveal a number of interesting remarks:

1. For the tensor STs, the best performance occurs on full transformation.
Meanwhile, the optimal dimension is about one-third of columns of full
transformation matrix.

2. On the time complexity, DTSA is more efficient than TSA, except
for cases of relatively large number of training samples, relatively large
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Table 4: Recognition accuracy (%) on YaleB database (mean±std)

Partitions 2D-PCA 2D-LDA 2D-LPP 2D-DLPP GLRAM

G5/P55 30.92±1.45 55.93±1.54 31.76±1.55 60.11±2.72 30.85±1.46
G10/P50 44.52±0.98 70.12±1.21 45.84±1.09 74.48±1.28 44.50±1.02
G20/P40 58.29±1.11 80.55±0.84 59.69±1.27 84.23±0.94 57.93±1.24
G30/P30 66.10±1.25 85.05±0.87 66.96±1.15 88.23±0.77 65.40±1.18
G40/P20 70.98±1.42 87.95±0.94 71.76±1.07 90.50±0.91 70.20±1.09
G50/P10 75.16±2.17 90.59±1.19 75.13±1.78 92.02±1.27 73.95±1.76

Partitions TMFA GTDA DATER TSA DTSA

G5/P55 67.06±2.97 30.85±1.46 67.22±2.69 29.55±1.67 70.35±1.74
G10/P50 75.57±1.46 44.56±1.00 78.91±1.72 44.05±1.25 82.36±1.23
G20/P40 84.97±0.96 57.00±1.24 86.44±1.15 58.42±1.26 89.52±0.73
G30/P30 91.15±0.72 65.40±1.18 89.89±0.77 66.19±1.22 92.47±0.73
G40/P20 93.52±0.78 70.20±1.09 91.95±0.84 71.14±1.24 94.11±0.76
G50/P10 95.12±0.94 73.95±1.75 93.51±0.97 74.64±1.94 95.31±0.88
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Figure 18: Recognition accuracy (%) on YaleB database (mean±std).
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number of samples in every class and relatively low resolution of sample
image.

3. For recognition accuracy, the methods with DI are better than the ones
without DI on ORL database. The results are more evident on YaleB
database where face images are more complex than those of the ORL
database. On Yale database, we can also see that the methods with DI
are superior to the corresponding ones without DI.

5. Conclusion

This paper presents a novel feature extraction method, Second Order
Discriminant Tensor Subspace Analysis (DTSA). Unlike 2D-DLPP, DTSA
employs two-sided transformations instead of single-sided transformation. D-
ifferent from TSA, DTSA uses DI to increase the accuracy of recognition of
facial images. Compared to the methods that preserve the global structure
of samples, DTSA focuses on the local structure of samples to fit the intrinsic
manifold structure of face images in high dimensional space. In this paper, we
analyze its connections to 2D-DLPP and TSA, theoretically. Furthermore,
DTSA benefits from three methods, i.e., tensor based methods, DI methods
and local structure preserved methods. Experiments on the ORL, Yale and
YaleB face database show the efficiency of the proposed method.

Our future researches will focus on extending DTSA to higher order tensor
for recognition of gait and action etc.
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