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Abstract

Locality Preserving Projections (LPP) is a widely used manifold reduced
dimensionality technique. However, it suffers from two problems: (1) Small
Sample Size problem; (2)the performance is sensitive to the neighborhood size
k. In order to address these problems, we propose an Exponential Locality
Preserving Projections (ELPP) by introducing the matrix exponential in this
paper. ELPP avoids the singular of the matrices and obtains more valuable
information for LPP. The experiments are conducted on three public face
databases, ORL, Yale and Georgia Tech. And the results show that the
performances of ELPP is better than those of LPP and the state-of-the-art
LPP Improved1.
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1. Introduction

Automatic facial recognition is a longstanding challenge in the field of
computer vision and pattern recognition for several decades. A real face
image usually has a high dimensional data. In order to deal with the high
dimensional image data adequately and avoid the curse of dimensionality, its
dimensionality needs to be reduced. Dimensionality reduction is the trans-
formation of high-dimensional data into a meaningful representation of di-
mensionality reduction. PCA[1] and LDA[2] are two widely used techniques
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for reduced dimensionality. Recently, a number of research efforts show that
the high dimensional image information in the real world lies on or is close
to a smooth nonlinear low dimensional manifold[3]. However, both PCA and
LDA fail to discover the underlying manifold structure, due to the fact that
they aim only to preserve the global structures of the image samples. In
order to uncover the essential manifold structure of the facial images, lapla-
cianfaces [4] are obtained by using LPP[5] to preserve the local structure of
image samples, i.e., the neighbor relationship between samples.

The neighbor relationship is measured by the artificially constructed ad-
jacent graph. Usually, the most popular adjacent graph construction manner
is based on the k nearest neighbor or ϵ−neighborhood criteria. Once an adja-
cent graph is constructed, the edge weights are assigned by various strategies
such as 0-1 weights and heat kernel function. Unfortunately, such adjacent
graph is artificially constructed in advance, thus it does not necessarily un-
cover the intrinsic local geometric structure of the samples. To make things
worse, the performance of LPP is seriously sensitive to the neighborhood
size k. To address the problem, some researches focus on how to construct
the adjacent graph. Instead of predefining a same neighborhood size k for
all samples, Sample-dependent Graph [6] is constructed based on samples
in question to determine the neighbors of each sample and similarities be-
tween sample pairs. Locally Discriminating Projection (LDP) [7] uses label
information to construct the adjacent graph. Sparsity Preserving Projections
(SPP) [8] aims to preserve the sparse reconstructive relationship of samples,
which is achieved by constructing the adjacent graph by minimizing a L1
regularization-related objective function.

Another problem of LPP is the fact that, like LDA, it also suffers from
the Small Sample Size (SSS) problem, when the dimension of the sample is
larger than the number of the samples, which causes a matrix to be singular.
For LDA, Fisherfaces employed PCA to reduce dimension before executing
the LDA. Exponential discriminant analysis (EDA)[9] introduced the matrix
exponential to overcome the SSS problem of LDA. For LPP, Laplacianfaces [4]
uses PCA to reduce dimension, and then applying the LPP. However, a
potential problem is that the PCA criterion may not be compatible with
the LPP criterion, thus the PCA step may discard the valuable information
for LPP in the null space of XLXT . In order to address this issue, the
Direct LPP [10] optimizes locality preserving criterion on high-dimensional
images via simultaneously diagonalizing XLXT and XDXT . Xu et al.[11]
transforms XLXT and XDXT into the main space of XDXT , then find
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the optimal solution in the main space of XDXT . The above methods can
extract the feature vectors of N − 1 dimensions at most.

To alleviate the above two problems of LPP: (1) the SSS problem; (2)the
performance is sensitive to the neighborhood size k, we propose an Expo-
nential Locality Preserving Projections (ELPP) in this paper. ELPP uses
matrix exponential to avoid the singular of XDXT . The main advantages
of the proposed method are two-fold. On the one hand, ELPP shows ad-
vantageous performance over LPP on complex face databases. Especially, on
larger size of training set, ELPP significantly outperforms LPP in terms of
the recognition rate. On the other hand, compared with LPP, ELPP is much
less sensitive to the parameter k.

The rest of this paper is organized as follows: in Section 2, we briefly
review the LPP algorithm; in Section 3, we give the background of matrix
exponential, and introduce the ELPP algorithm; in Section 4, the experi-
ments are conducted on three public face databases: ORL, Yale and Georgia
Tech face database, and the results are analyzed which show that the per-
formance of ELPP is better than those of LPP and the state-of-the-art LPP
Improved1, especially for face database with different poses and cluttered
background like the Georgia Tech face database; finally in Section 5, conclu-
sions are drawn.

2. Locality Preserving Projections

Given a set of N samples X = {x1,x2, . . . ,xN},xi ∈ RD, we attempt to
find a transformation matrix W of size D × d to map: yi = WTxi,yi ∈ Rd,
such that yi is easier to be distinguished in the projective subspace.

LPP[5] attempts to preserve the local structure of samples in the low-
dimensional projective subspace as much as possible. The local structure of
samples is measured by constructing a adjacency graph G. There are two
ways to construct G: ε− neighborhoods and k nearest neighbors. In this
paper, we use the k nearest neighbors to construct adjacency graph G.

The similarity matrix S is usually defined by using the heat kernel func-
tion as following:

Sij =

{
exp(−∥xi − xj∥2/2t2) nodes i and j are connected in G

0 otherwise.
(1)

where t is a parameter that is determined empirically. In order to avoid
to contain discriminant information, we do not use any label information
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to construct the similarity matrix S. We hope that the criterion function
incurs a heavy penalty if neighboring points xi and xj are mapped far apart.
Therefore, minimizing to the criterion is an attempt to ensure that if xi and
xj are close, then yi and yj are close, as well. That means to minimize:∑

i,j

(yi − yj)
2Sij (2)

A reasonable criterion function of LPP is as follows:

min
WTXDXTW=I

WTXLXTW (3)

where D is a diagonal matrix; its entries Dii =
∑

j Sij measure the local
density around xi. L = D − S is the Laplacian matrix. Finally, the trans-
formation matrix consists of the eigenvectors associated with the smallest
eigenvalues of the following generalized eigenvalue problem:

XLXTw = λXDXTw (4)

3. Exponential Locality Preserving Projections (ELPP)

3.1. Matrix Exponential

The matrix exponential is widely used in applications such as nuclear
magnetic resonance spectroscopy [12][13], control theory[14], and Markov
chain analysis[15]. In this section, the definition and properties of matrix
exponential are introduced. Given an n×n square matrix A, its exponential
is defined as follows:

exp(A) = I+A+
A2

2!
+ · · ·+ Am

m!
+ · · · (5)

where I is a identity matrix with the size of n× n. The properties of matrix
exponential are listed as follows:

1. exp(A) is a finite matrix.

2. exp(A) is a full rank matrix

3. If matrix A commutes with B, i.e.,AB = BA, then exp(A + B) =
exp(A) exp(B).

4. If B is a nonsingular matrix, then exp(B−1AB) = B−1 exp(A)B.
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5. If v1,v2, . . . ,vn are eigenvectors ofA that correspond to the eigenvalues
λ1, λ2, . . . , λn, then v1,v2, . . . ,vn are also eigenvectors of exp(A) that
correspond to the eigenvalues eλ1 , eλ2 , . . . , eλn . It is also well known
that the matrix is non-singular.

A wide variety of methods for computing exp(A) were analyzed in the
classic paper of Moler and Van Loan [16], which was reprinted with an update
in [17]. The scaling and squaring method is one of the best methods for
computing the matrix exponential. To facilitate the subsequent discussion,
we first define the [p/q] Padé approximant to exp(A) as following:

Rpq(A) = [Dpq(A)]−1Npq(A) (6)

where

Npq(A) =

p∑
j=0

(p+ q − j)!q!

(p+ q)!j!(q − j!)
(A)j (7)

and

Dpq(A) =

q∑
j=0

(p+ q − j)!q!

(p+ q)!j!(q − j!)
(A)j (8)

The scaling and squaring method is summarized in Algorithm 1. The cost
of Algorithm 1 is πm + ⌈log2(∥A∥1/θm)⌉ matrix multiplications, where m is
the degree of Padé approximant used, and πm is tabulated in Table 1, plus
the solution of one matrix equation. For details, please refer to [18].

Table 1: Number of matrix multiplications, πm, required to evaluate Rm

m 1 2 3 4 5 6 7 8 9 10

πm 0 1 2 3 3 4 4 5 5 6

m 11 12 13 14 15 16 17 18 19 20 21

πm 6 6 6 7 7 7 7 8 8 8 8

3.2. the ELPP Algorithm

We denote SL = XLXT and SD = XDXT , then the eigen solution for-
mulation of LPP (3) can be rewritten as follows:

min
WTSDW=I

WTSLW (9)
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Algorithm 1 the scaling and squaring method

b(0: 13) = [64764752532480000, 32382376266240000, 7771770303897600,
1187353796428800, 129060195264000, 10559470521600, 670442572800,
33522128640, 1323241920, 40840800, 960960, 16380, 182, 1];
θ3 = 0.01495585217958292, θ5 = 0.253939833006323,θ7 =
0.9504178996162932, θ9 = 2.097847961257068,θ13 = 5.371920351148152,
µ = trace(A)/n
A← A− µI
A ← D−1AD, where D is a balancing transformation (or set D = I if
balancing does not reduce the 1-norm of A).
for m = [3, 5, 7, 9, 13] do
if ∥A∥1 ≤ θm then
X = Rm(A), where Rm is the [m/m] Padé approximant to exp(A)
X = eµDXD−1

end if
end for
A← A/2s, where s is a minimal integer such that ∥A/2s∥1 ≤ θ13
A2 = A2,A4 = A2

2,A6 = A2A4

U = A[A6(b13A6 + b11A+b9A2) + b7A6 + b5A4 + b3A2 + b1I]
V = A6(b12A6 + b10A+b8A2) + b6A6 + b4A4 + b2A2 + b0I
Solve (−U+V)R13 = U+V for R13

X = R2s

13 by repeated squaring.
X = eµDXD−1

6



Theorem 1. Let D and N be the dimension of the sample and the number
of the samples,respectively .If D > N , then the rank of SL is at most N − 1
and the rank of SD is at most N .

Proof. According to the properties of the Laplacian matrix, it is easy to
know that the determinant of L is 0. So, the rank of L is at most N − 1. It
is known that the maximum possible rank of the product of two matrices is
smaller than or equal to the smaller of the ranks of the two matrices. Hence,
rank(SL) = rank(XLXT ) ≤ N − 1. Similarly, we have rank(SD) ≤ N .

From Theorem 1, LPP also suffers from the SSS problem, due to the fact
that the matrix SL is singular when the SSS problem occurs. We denote
the eigenvectors of SL as VL = [vL1,vL2, . . . ,vLn] that correspond to the
eigenvalues ΛL = diag(λL1, λL2, . . . , λLn). Similarly, the eigenvectors of SD

are denoted as VD = [vD1,vD2, . . . ,vDn] that correspond to the eigenvalues
ΛD = diag(λD1, λD2, . . . , λDn). The Eq. (9) can be rewritten as follows:

min
WT (VT

DΛDVD)W=I
WT (VT

LΛLVL)W (10)

The matrix SL is non-singular, when the SSS problem occurs. In order
to address the problem, the PCA is adopted to reduce the dimension of the
feature space toN−1, before applying the standard LPP defined by Eq. (10).
Unfortunately, the valuable information for LPP in the null space of SL may
also be discarded in the PCA step.To extract this kind of valuable information
for LPP, we replace λLi, i.e., the eigenvalues of SL, by exp(λLi) and λDi, i.e.,
the eigenvalues of SD, by exp(λDi). Then, Eq. (10) is transformed into

min
WT (VT

D exp(ΛD)VD)W=I
WT (VT

L exp(ΛL)VL)W

= min
WT exp(SD)W=I

WT exp(SL)W

(11)

The above equation is the criterion function of ELPP. According to the prop-
erties of the matrix exponential, the exp(SL) is nonsingular. The valuable
information for LPP in the null space of SL can be extracted by Eq. (11).
According to Rayleigh quotient, Eq. (11) is minimized if and only if the ma-
trix W consists of d generalized eigenvectors, which are corresponding to the
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Figure 1: Sample images of one individual from the ORL database.

Figure 2: Sample images of one individual in the YALE database.

smallest d generalized eigenvalues of the matrix pencil (exp(SL), exp(SD)),
which satisfy:

exp(SL)w = λ exp(SD)w (12)

The transformation matrix W consists of the d eigenvectors corresponding
to the d smallest eigenvalues.

4. Experiments

4.1. Databases

We conducted the experiments on three well-known face databases ORL1,
Yale2 and Georgia Tech face databases 3.

The ORL database collects images from 40 individuals, where 10 different
images are captured for each individual. For each individual, the images with
different facial expressions and details are obtained at different times. The
face in the images may be rotated, scaled and be tilting in some degree. Each
image is manually cropped and resized to 32× 32 pixels. The sample images
of one individual from the ORL database are shown in Fig. 1.

There are total of 165 gray scale images for 15 individuals where each
individual has 11 images in Yale face database. The images demonstrate
variations in lighting condition, facial expression (normal, happy, sad, sleepy,
surprised, and wink). Each image is manually cropped and resized to 32×32
pixels. The sample images of one individual from the Yale database are
showed in Fig. 2.

1http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
2http://cvc.yale.edu/projects/yalefaces/yalefaces.html
3http://www.anefian.com/research/face_reco.htm
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Figure 3: Sample images of one individual from the Georgia Tech database.

Georgia Tech face database contains images of 50 individuals taken in
two or three sessions at different times. Each individual in the database is
represented by 15 color JPEG images with cluttered background taken at
resolution 640 × 480 pixels. The average size of the faces in these images is
150× 150 pixels. The pictures show frontal and/or tilted faces with different
facial expressions, lighting conditions and scale. In the experiments, 15 indi-
viduals were selected from 50 individuals. Each image was manually grayed,
cropped and resized to 32× 32 pixels. The sample images for one individual
of the Georgia Tech database are showed in Fig. 3.

4.2. Experiments and results on the ORL database

The experiments are conducted on the ORL database. In our experi-
ments, the similarity matrix S is defined by the heat kernel function. Em-
pirically, the parameter t is set as the mean norm of the training set. The
neighbors parameter k is searched from {2, 3, . . . , N −1}. We randomly split
the image samples so that p (p = 2, 3, 4, 5, 6, 7, 8) images for each individual
are used as the training set and the remainings are used as the testing set.
This process is repeated 50 times. Fig. 4 plots the relationship between the
performances of two algorithms and the neighborhood size k, when p = 2, 3, 4.
The warmer color represents the better performance in the figure. Compar-
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ing the corresponding columns of Fig. 4(a) and Fig. 4(b), there’s very little
color difference in each column of Fig. 4(a). This means that the performance
of ELPP is much less sensitive to the parameter k than that of LPP.

Analytically, we define the criterion to measure the sensitivity to the pa-
rameter k. The recognition accuracies are normalized to [0, 1]. Within the
50 random splits in our experiments, each split includes N − 1 recognition
accuracies corresponding N − 1 values of k. For each split, the maximum
difference of recognition accuracy is obtained by subtracting the minimum
accuracy from the maximum accuracy. The criterion Mean Maximum Dif-
ference (MMD) is the mean value of all maximum differences of recognition
accuracy. To a certain degree, the smaller value of MMD means more insen-
sitive to k. The MMDs of ELPP and LPP are listed in Table 2. From the
table, the MMDs of ELPP are less than that of LPP. This also shows that
ELPP is less sensitive to k than LPP.

Table 2: MMD of ELPP and LPP on ORL database

p 2 3 4 5 6 7 8

ELPP 0.4258 0.3971 0.3890 0.4467 0.4793 0.3727 0.3357
LPP 0.6407 0.7074 0.7516 0.7009 0.6800 0.6191 0.6562

In order to investigate the performance of ELPP, we compare ELPP with
PCA, LPP and LPP Improved1[19]. These methods are the dimensionali-
ty reduction algorithms without discriminant information. The results are
illustrated in Fig. 5. The solid lines denote that the neighborhood size k
traverses {2, 3, . . . , N − 1}. The dot-dash lines denote that the k is equal
to 2. As shown in Fig. 5, the performances of ELPP are much better than
those of LPP and LPP Improved1 in the case of k = 2. When k travers-
es {2, 3, . . . , N − 1}, the performances of ELPP, LPP and LPP Improved1
are not much different. With the increasing sample size, the performance
of ELPP becomes better and better. In Fig. 5, we also find that the space
between two curves of ELPP is much narrower than those of LPP and LPP
Improved1. This also proves that the performance of ELPP is much less
sensitive to the parameter k than those of LPP and LPP Improved1.

4.3. Experiments and results on the Yale database

Unlike ORL database, Yale database contains the facial images which are
influenced by various expressions and lighting condition. The exponential
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Figure 4: The performances of two algorithms vs. the neighborhood size k on the ORL
database.
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Figure 5: The performances of two algorithms on the ORL database.

setting is described in the above section. Fig. 6 plots the relationship between
the performances of two algorithms and the neighborhood size k. Comparing
the corresponding columns of Fig. 6(a) and Fig. 6(b), there’s very little color
difference in each column of Fig. 6(a). This means that the performance of
ELPP is much less sensitive to the parameter k than that of LPP. The same
conclusion can be drawn from the other sub-figures. We also list the MMDs
of of ELPP and LPP in Table 3. From the table, the MMDs of ELPP are
less than that of LPP.

Table 3: MMD of ELPP and LPP on Yale database

p 2 3 4 5 6 7 8

ELPP 0.2617 0.3627 0.3625 0.3619 0.3170 0.3289 0.3333
LPP 0.4590 0.4800 0.5636 0.4984 0.5772 0.5817 0.5752

In the same way, we implement ELPP, LPP and LPP Improved1 on Yale
database. The results are illustrated in Fig. 7. The legend is the same as
the description in the above section. As shown in Fig. 7, the performances of
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Figure 6: The performances of two algorithms vs. the neighborhood size k on the Yale
database.
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Figure 7: The performances of two algorithms on the Yale database.

ELPP are better than those of LPP and LPP Improved1 in two ranges of k.
It is interesting that when the training sample size is small, the performance
of ELPP with k = 2 is better than that of LPP with k = 2, 3, . . . , N − 1.
It also illustrates that ELPP is more effective than LPP for SSS problem.
In Fig. 7, we also find that the space between two curves of ELPP is much
narrower than those of LPP and LPP Improved1. This also proves that the
performance of ELPP is much less sensitive to the parameter k than those
of LPP and LPP Improved1.

4.4. Experiments and results on the Georgia Tech face database

Georgia Tech face database is more complex than Yale database, because
it contains various pose faces with different expressions on cluttered back-
ground. In this experiment, We randomly split the image samples so that p
(p = 2, 4, 6, 8, 10, 12) images for each individual are used as the training set
and the rest are used as the testing set. This process is repeated 30 times.
Other setting is the same as Yale database. We plot the relationship between
the performances and k in Fig. 8. In this figure, we not only see the similar
phenomenon in Fig. 6 but also see the fact of that the better performance
of ELPP occurs when k is small. The MMDs of ELPP and LPP are shown
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in Table 4. As we can see in Table 4, in each split, the MMD of ELPP
is less than that of LPP, except for p = 2. The similar conclusion can be
drawn from the table. The experimental results about the performances are
also illustrated in Fig. 9. As shown in the figure, the similar phenomenon as
Fig. 7 can be seen. Moreover, we also find that the performance of ELPP
with k = 2 is better than that of LPP with k ∈ {2, 3, . . . , N − 1}.

Table 4: MMD of ELPP and LPP on the Georgia Tech database

p 2 4 6 8 10 12

ELPP 0.4733 0.3856 0.3875 0.4648 0.3917 0.3048
LPP 0.4060 0.5896 0.6350 0.5981 0.6493 0.5825

4.5. Discussion

The experiments have been systematically performed on three public face
databases: ORL, Yale and Georgia Tech. Among them, Yale database is
the simplest one which only includes the facial images from various views.
The Georgia Tech database is the most complex one which includes the
non-aligned head image with cluttered background. On ORL database, the
performance of PCA is better than the performances of the other three meth-
ods with k = 2 (see Fig. 5). This is due to the tuning parameters for the
other three methods. On more complex Yale database, the performance of
ELPP with k = 2 is superior to that of PCA (see Fig. 7). On the most
complex Georgia Tech database, ELPP with k = 2 surpasses over LPP with
k ∈ {2, 3, . . . , N − 1} (see Fig. 9). Based on above analysis, ELPP shows
outstanding performance on complex face databases.

5. Conclusion

We have presented a new reduced dimensionality technique, which is
named as Exponential Locality Preserving Projections. It addressed the
two problems of LPP: (1) Small Sample Size problem; (2)the performance
is sensitive to the neighborhood size k. ELPP avoids the singular of the
matrices and obtains more valuable information for LPP. The experimental
results prove the performances of ELPP was better than these of LPP and
LPP Improved1 on three public face database: ORL, Yale and Georgia Tech.
The results reveal a number of interesting remarks:
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(c) ELPP (p=4)
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(e) ELPP (p=6)
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(g) ELPP (p=8)
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(i) ELPP (p=10)
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(k) ELPP (p=12)
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Figure 8: The performances of two algorithms vs. the neighborhood size k on the the
Georgia Tech database.
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Figure 9: The performances of two algorithms on the Georgia Tech database.

1. ELPP shows outstanding performance on complex face databases.

2. ELPP shows better performance on larger size of training set.

3. ELPP is much less sensitive to the parameter k than LPP.

Our future work focus on applying matrix exponential to improve the
varieties of LPP.
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