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A micro-expression is considered a fast facial movement that indicates genuine emotions and thus
provides a cue for deception detection. Due to its promising applications in various fields, psychologists
and computer scientists, particularly those focus on computer vision and pattern recognition, have
shown interest and conducted research on this topic. However, micro-expression recognition accuracy is
still low. To improve the accuracy of such recognition, in this study, micro-expression data and their
corresponding Local Binary Pattern (LBP) (Ojala et al., 2002) [1] code data are fused by correlation
analysis. Here, we propose Sparse Tensor Canonical Correlation Analysis (STCCA) for micro-expression
characteristics. A sparse solution is obtained by the regularized low rank matrix approximation. Ex-
periments are conducted on two micro-expression databases, CASME and CASME 2, and the results show
that STCCA performs better than the Three-dimensional Canonical Correlation Analysis (3D-CCA) with-
out sparse resolution. The experimental results also show that STCCA performs better than three-order
Discriminant Tensor Subspace Analysis (DTSA3) with discriminant information, smaller projected di-
mensions and a larger training set sample size. The experiments also showed that Multi-linear Principal
Component Analysis (MPCA) is not suitable for micro-expression recognition because the eigenvectors
corresponding to smaller eigenvectors are discarded, and those eigenvectors include brief and subtle
motion information.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

A micro-expression is a brief facial expression that is typically less
than 0.5 s in duration [2,3]. It can reveal an emotion that a person
tries to conceal, especially in high-stakes situations [4,5]. Compared
with ordinary facial expressions, micro-expressions have two sig-
nificant characteristics: short duration and low intensity. The re-
putation of micro-expressions is derived from their potential prac-
tical applications as a cue of genuine emotions or lie detection in
many fields, such as clinical diagnosis [6], national security [7], and
interrogations [8]. Compared with polygraphs, lie detection based on
micro-expressions is unobtrusive, and thus, the individuals being
observed are less likely to develop countermeasures.

Micro-expressions were first discovered decades ago by Hag-
gard and Isaacs. At the time, they were termed micro-momentary
expressions and regarded as repressed (unconscious) emotions
ng).
[9,10]. In 1969, Ekman and his colleague [11] analyzed video in-
terviews of a depressed patient who attempted to commit suicide
and found such a facial display, which was termed a micro-ex-
pression. From then on, several studies have focused on micro-
expressions (mainly by Ekman's group) but few results have been
published. According to Ekman [5], micro-expressions might be
the most promising cue for deception detection.

However, human beings have difficulty detecting and re-
cognizing micro-expressions. This difficulty may be due to their
short duration, low intensity and fragmental action units [4,2].
Although there is a debate on the duration, the generally accepted
upper limit duration is 0.5 s [2,3], which is considerably faster
than ordinary facial expressions. Micro-expressions are typically
extremely subtle because they are displayed with repression [2].
Additionally, micro-expressions typically only present part of
the action units of full-stretched facial expressions; only the up-
per or lower face may show action units [11]. To improve human
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performance on recognizing micro-expressions, Ekman [12]
developed the Micro-Expression Training Tool (METT), which
trains people to better recognize micro-expressions in seven
categories.1 Computer scientists try to use computers to auto-
matically recognize micro-expressions to better apply micro-ex-
pressions as a cue to reveal a person's emotions in practice.

Existing research on micro-expression recognition is rare. Poli-
kovsky et al. [13] used a 3D-gradient descriptor for micro-expression
recognition. Wang et al. [14] treated a micro-expression gray-scale vi-
deo clip as a 3rd-order tensor and used Discriminant Tensor Subspace
Analysis (DTSA) and an Extreme Learning Machine (ELM) to recognize
micro-expressions. Pfister et al. [15] utilized a temporal interpolation
model (TIM) [16] based on a Laplacian matrix to normalize the frame
numbers of micro-expression video clips. In addition, the LBP-TOP [17]
was used to extract the motion and appearance features of micro-ex-
pressions. The features are given to multiple kernel learning to re-
cognize micro-expression. Huang et al. [18] proposed a Spatiotemporal
Local Binary Pattern with Integral Projection (STLBP-IP), in which they
used integral projection for extracting face shape information and
subsequently employed 1-D and 2-D local binary pattern to face shape,
for micro-expression recognition. They [19] also proposed Spatio-
temporal Local Quantized Pattern (STCLQP), which exploits magnitude
and orientation as complementary of sign information, for improving
the performance of micro-expression recognition.

Gray video clips of micro-expressions are viewed as 3rd-order
tensors, which are considered extensions of vectors and matrices.
Tensors have been widely used [20–23]. The elements of a tensor are
addressed by a number of indices [24], where the number of indices
used in the description defines the order of the tensor object and
each index defines one mode [25]. For micro-expression gray video
clips, mode-1 and mode-2 represent the facial spatial information
and mode-3 represents the temporal information. The characteristics
of micro-expressions, such as short duration and subtlety, require
micro-expressions to be captured by high-speed, high-resolution
cameras. Therefore the captured micro-expression data are often in a
high dimensional tensor space, and suffer from the so-called curse of
dimensionality.2 However, micro-expression data are typically highly
constrained and belong to a subspace, a manifold of intrinsically low
dimensions. Before analyzing high-dimensional data, their di-
mensionality must be reduced. Dimensionality reduction is the
transformation of high-dimensional data into a lower dimensional
data space. The tensor subspace dimensionality reduction has many
advantages compared with the traditional vector subspace di-
mensionality reductions, including (1) keeping the spatial structure
information of data, (2) avoiding the well-known small sample size
(SSS) problem, and (3) lowering the computational complexity.
Multi-linear Principal Component Analysis (MPCA) [26], a tensor
version of PCA, applies PCA transformation to each mode (or di-
mensionality) of tensors. Similarly, Discriminant Analysis with Tensor
Representation (DATER) [27], General Tensor Discriminant Analysis
(GTDA) [28], Tensor Subspace Analysis (TSA) [29], and Discriminant
Tensor Subspace Analysis (DTSA) [30] apply LDA, Maximum Scatter
Difference (MSD) [31], LPP, and DLPP, respectively, to transform each
mode of tensors. These methods use a certain vector subspace
transformation method to transform every mode of tensors.

Pfister et al. [15] successfully used LBP-TOP [17] to extract the
motion and appearance features of micro-expressions. In this pa-
per, we seek a low dimensional subspace, in which the correlation
between micro-expression data and their corresponding LBP code
data is maximal. Canonical correlation analysis (CCA) [32] is an
1 Contempt was added in addition to the basic six emotions.
2 The curse of dimensionality refers to various phenomena that arise when

analyzing and organizing data in high-dimensional spaces (often with hundreds or
thousands of dimensions) that do not occur in low-dimensional settings such as the
three-dimensional physical space of everyday experience.
efficient method for seeking such a subspace. Moreover, some
variations of the CCA method, such as kernel CCA (KCCA) [33] and
Locality Preserving CCA (LPCCA) [34] were also developed in re-
cent years. One approach analyzes the relationship between two
tensor data sets rather than vector data sets. Tensor variations of
the CCA have also been introduced. The two-dimensional CCA (2D-
CCA) [35] is the first work along this line to analyze relations be-
tween two sets of image data without reshaping into vectors. It
was further extended to local 2D-CCA [36] and 3D CCA (3D-CCA)
[37]. However, CCA is generally sensitive to noise. In order to ad-
dress the problem, Hardoon and Shawe-Taylor [38] used LASSO to
propose Sparse CCA (SCCA). Yan et al. [39] used the low rank
matrix approximation to propose Sparse 2D-CCA.

As noted above, micro-expressions exhibit two main character-
istics: short duration and low intensity. Thus, micro-expression data
are sparse in both the spatial and temporal domains. Accordingly,
we will use sparse tensor analysis to reduce the dimensions of
micro-expression data. Wang et al. [40] proposed Sparse Tensor PCA
(STPCA) to recognize a face with occlusions. They [41] also proposed
Sparse Tensor Discriminant Color Space (STDCS), in which the color
of a face is recognized more robustly in noisy data sets.

Motivated by Sparse 2D-CCA, we proposed Sparse Tensor CCA
(STCCA) in this paper. STCCA obtains a sparse solution via regular-
ized low rank matrix approximation. STCCA is exploited to seek a
subspace such that the correlation between micro-expression data
and their corresponding LBP code data is maximal in the subspace.
The micro-expression information in video clip is tiny. Some of
these information are enhance in the corresponding LBP codes. So,
STCCA can enhance the recognition accuracy of micro-expression.

The remainder of this paper is organized as follows. In Section 2, we
provide the related definitions to tensors. In Section 3, we briefly review
CCA and STCCA. In Section 4, the experiments are conducted with two
micro-expression databases (CASME and CASME 2), and the results
show that STCCA outperforms 3D-CCA and DTSA3. Finally in Section 5,
conclusions are drawn and several issues for futureworks are described.
2. Tensor fundamentals

A tensor is a multidimensional array. It is the higher-order
generalization of a scalar(zero-order tensor), vector(1st-order
tensor), and matrix (2nd-order tensor). In this paper, lowercase
italic letters (a, b, …) denote scalars, bold lowercase letters (a, b,
…) denote vectors, bold uppercase letters (A, B, …) denote ma-
trices, and calligraphic uppercase letters ( , , …) denote tensors.
The formal definition is given below [42,43]:

Definition 1. The order of a tensor ∈ × ×⋯×I I IN1 2 is N. An element
of is denoted by …i i iN1 2

or …ai i iN1 2
, where ≤ ≤i I1 n n,

= …n N1, 2, , .

Definition 2. The n-mode vectors of are the In-dimensional
vectors obtained from by fixing every index but index in.

Definition 3. The n-mode unfolding matrix of , denoted by
( ) ∈( )
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We can generalize the product of two matrices to the product
of a tensor and a matrix.

Definition 4. The n-mode product of a tensor ∈ × ×⋯×I I IN1 2 by a
matrix ∈ ×U J In n, denoted by × Un , is an
( × × ⋯ × × × × ⋯ ×− +I I I J I In n n N1 2 1 1 )-tensor, the entries of which
are given by

∑( × ) =
( )

… … … …− + − +
a uU .

2
n i i i j i i

i
i i i i i i j i

def

n n n N
n

n n n N n n1 2 1 1 1 2 1 1

Definition 5. The scalar product of two tensors ∈ × ×⋯×, I I IN1 2 ,
denoted by 〈 〉, , is defined in a straightforward manner as
〈 〉 = ∑ ∑ ⋯ ∑ … …a b, i i i i i i i i i

def

N N N1 2 1 2 1 2
. The Frobenius norm of a tensor

∈ × ×⋯×I I IN1 2 is then defined as ∥ ∥ = 〈 〉,F
def

From the definition of the n-mode unfolding matrix, we have

∥ ∥ = ∥ ( ) ∥ ( )( )A 3F n F

By using tensor decomposition, any tensor can be expressed as
the product

= × × ⋯ × ( )U U U 4N N1 1 2 2

where Un, = …n N1, 2, , , is an orthonormal matrix and contains
the ordered principal components for the nth mode. is called the
core tensor. Unfolding the above equation, we have

= ( ⊗ ⋯ ⊗ ⊗ ⊗ ⋯ ⊗ ) ( )( ) ( ) + −A U C U U U U 5n n n N n n
T

1 1 1

where the operator ⊗is the Kronecker product of the matrices.
3. Sparse tensor canonical correlation analysis

3.1. Canonical correlation analysis

Consider two sets of vectors { ∈ = … } t Mx , 1, ,t
Dx and

{ ∈ = … } t My , 1, ,t
Dy . Their mean vectors are denoted by

¯ = ∑ =x x
M t

M
t

1
1 and ¯ = ∑ =y y

M t
M

t
1

1 , such that the centered vectors are
represented by ˜ = − ¯x x xt t and ˜ = − ¯y y yt t , respectively.

CCA seeks a pair of linear transforms ∈ wx
Dx and ∈ wy

Dy,

such that correlations between the transformed w xx
T and w yy

T are
maximized. In other words, their Pearson's coefficients are max-
imized:
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where ( )cov , and ( )var , are the mean covariance and variance,

respectively. = ∑ ˜ ˜
=C x yxy M t

M
t t
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1 represents the statistical expecta-

tion. Similarly, = ∑ ˜ ˜
=C x xxx M t

M
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=C y yyy M t
M
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1 . Then, CCA
criterion can be written as follows:

( )
w C wargmax

7
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where =C Cyx xy
T .
3.2. Sparse tensor canonical correlation analysis

In this section, we will extend CCA from vector space to tensor
space and make the transformed matrices sparse. We consider two
sets of Nth-order tensors { ∈ = … }× ×⋯× t M, 1, ,t

I I IN1 2 and
{ ∈ = … }× ×⋯× t M, 1, ,t

J J JN1 2 .
Similarly, their mean tensors are defined by

∑ ∑¯ = ¯ =
( )= =M M

1
,

1
,

9t

M

t
t

M

t
1 1

and the centered tensors are defined by

˜ = − ¯ ˜ = − ¯ ( ), . 10t t t t

The STCCA seeks two transform sets { ∈ ∈ … ∈ }( ) ( ) ( )  u u u, , ,I I N IN1 1 2 2

and { ∈ ∈ … ∈ }( ) ( ) ( )  v v v, , ,J J N JN1 1 2 2 such that correlations between
= × × ⋯ ×( ) ( ) ( )x u u ut N

N
1

1
2

2 and = × × ⋯ ×( ) ( ) ( )y v v vt N
N

1
1

2
2 are

maximized and ( )u n and ( )v n are sparse. Here, sparsity indicates that ( )u n

and ( )v n have only a small number of nonzero elements or numerous
zero elements. Therefore, the criterion function of STCCA is defined as:

( )

( ) = ( ) =

( ) ( ) < ( )( ) ( )

cov x y

var x var y

Card Card Ku v

arg max ,

s. t. 1, 1,

, 11n n
n

u v,n n

where (·)Card denotes the number of nonzero elements of ( )u n and ( )v n .
Given two transform sets with −N 1 vectors
{ … … }( ) ( − ) ( + ) ( )u u u u, , , , ,n n N1 1 1 and { … … }( ) ( − ) ( + ) ( )v v v v, , , , ,n n N1 1 1 , we
denote
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where, ˜ ( )xt
n means the result of Eq. (12) for the tth sample t Thus, we

have

( ) = ( )( ) ( ) ( ) ( )cov x y u C v, 17
n n T

xy
n n

Based on the above notations, Eq. (11) can be rewritten as
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Without the condition of ( ) ( ) <( ) ( )Card Card Ku v,n n
n, the La-

grangian of Eq. (18) is
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n T
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Taking the partial derivative of L with respect to ( )u n and ( )v n and
setting them equal to zeros, we have
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λ= ( )( ) ( ) ( ) ( )C v C u 20xy
n n

xx
n n

1

λ= ( )( ) ( ) ( ) ( )C u C v 21yx
n n

yy
n n

2

where =( ) ( )C Cyx
n

xy
n T . Replacing ( )v n in Eq. (21) with Eq. (20), we have
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n n1
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Additionally replacing ( )u n in Eq. (20) with Eq. (21), we obtain

λ λ= ( )( ) ( )− ( ) ( ) ( ) ( )C C C v C v 23yx
n

xx
n

xy
n n

yy
n n1

1 2

Thus, ( )u n and ( )v n can be obtained by solving two generalized
eigenvalues problems.

However, ( )u n and ( )v n are not sparse. In order to make ( )u n and
( )v n sparse, we use firstly the regularized SVD on ( )C n . For con-

venience, we denote
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C C C C . 24
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Using SVD on ( )C n , we have
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i i
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2 2 are the positive eigenvalues of

( ) ( )C Cn n T . ( )ui
n and ( )vi

n are the eigenvectors of ( ) ( )C Cn n T and ( ) ( )C Cn T n ,
respectively.

To make ( )ui
n and ( )vi

n sparse, we define the closest rank-l matrix

approximation of ( )C n as follows:

∑=
( )

( ){ }

=

( ) ( )dC u v
26

n l

i

l

i i
n

i
n T

1

where ≤l r and the term closest means that the squared Frobenius
norm between ( )C n and ( ){ }C n l is minimal, where the Frobenius
norm is defined as

∥ − ∥ = {( − )( − ) } ( )( ) ( ){ } ( ) ( ){ } ( ) ( ){ }C C C C C Ctr 27n n l
F

n n l n n l T2

Then, the rank-1 matrix approximation of ( )C n can be formulated as
solving the following optimization form:
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C u vmin
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Then, the low rank approximation property of SVD implies that the
solution is

˜ = ˜ = ( )( ) ( ) ( ) ( )du u v v, . 29n n n n
1 1 1

The subsequent pairs ( )( ) ( )du v,i
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approximations of the corresponding residual matrices. For ex-
ample, ( ) ( )d u vn n T

2 2 2 is the best rank one approximation of
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1 1 1 .

To make ˜ ( )u n and ˜ ( )v n sparse, ℓ1-norm penalties are imposing on
Eq. (28),
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where λ > 0u and λ > 0v are tradeoff parameters.
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Thus, we only need to minimize λ∑ ( ˜ − ( ˜ ) ˜ + | ˜ |)=
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The equation can be solved by Lemma 1.

Lemma 1. Let β̂j be the minimizer of β α β λ β− + | |2j j j j
2 ,

λ( > = … )j n0, 1, 2, , . Then, β α α^ = ( ) { | | − }λsign max 0,j j j 2
.

According to the lemma, the solution of Eq. (31) can be written
as follows
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2 32

n n T n
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are the ×I 1n vectors with all entries equal to

0 and 1, respectively. Similarly, given a fixed ˜ ( )v n and supposing
∥ ˜ ∥ =( )v 1n , we have
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( )

( ) ( ) ( ) ( ) ( )u C v 0 C v 1sign max ,
2

.
33

n n n
I

n n u
nn

Thus, the optimal ˜ ( )u n and ˜ ( )v n can be obtained by iteratively
computing Eqs. (33) and (32).

Thus, we obtain

{ }= … ( )
( ) ( ) ( ) ( )U u u u, , , 34
n n n

L
n

1 2 n

and

{ }= … ( )
( ) ( ) ( ) ( )V v v v, , , . 35
n n n

L
n

1 2 n

The sparse transforms ( )U n and ( )V n can now be obtained by the
above two equations. Because ( )U n and ( )V n depend on
{ … … }( ) ( − ) ( + ) ( )U U U U, , , , ,n n N1 1 1 and { … … }( ) ( − ) ( + ) ( )V V V V, , , , ,n n N1 1 1 ,
respectively, the optimization of ( )U n and ( )V n depends on the
projections in other modes. An iterative procedure can be con-
structed to maximize Eq. (11). We use { … }( ) ( ) ( )u u u, , ,l l l

N1 2
N1 2

and

{ … }( ) ( ) ( )v v v, , ,l l l
N1 2
N1 2

to project and into the ( … )l l l, , , N1 2 feature
dimension, which is determined by the lnth column vector in the
nth mode projected matrices ( = … )n n1, 2, , :

= × × × ⋯ × ( )
( … ) ( ) ( ) ( )x u u u 36
l l l

l l N l
N, , ,

1
1

2
2

3
N

N
1 2

1 2

and

= × × × ⋯ × ( )
( … ) ( ) ( ) ( )y v v v . 37
l l l

l l N l
N, , ,

1
1

2
2

3
N

N
1 2

1 2

The Pearson coefficient ρ( … )l l l, , , N1 2 in the ( … )l l l, , , N1 2 feature
dimension is calculated by

ρ = ( )

( ) ( ) ( )

( … )
( … ) ( … )

( … ) ( … )

cov x y

var x var y

,
.

38

l l l
l l l l l l

l l l l l l

, , ,
, , , , , ,

, , , , , ,
N

N N

N N

1 2
1 2 1 2

1 2 1 2

The aim of STCCA is to seek the sparse projected matrices to
maximize these Pearson coefficients. The sum of these Pearson
coefficients is denoted by

∑ ∑ ∑ ρ= …
( )= = =

( … )J .
39l

L

l

L

l

L
l l l

1 1 1

, , ,

N

N
N

1

1

2

2
1 2

We use the difference of J between the iteration and the previous
iteration as the convergence criterion. The pseudocode of the



2:

3:

Fig. 1. Illustration of the convergence of the second iterative loop. t indicates the times of the first iterative loop. n and j are two variable at line 7 and line 12 in Algorithm 1,
respectively.
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proposed method is summarized in Algorithm 1.

Algorithm 1. STCCA.
1: 4:

5:
6:
INPUT: two sets of M tensor samples { ∈ }× ×…×t
I I IN1 2 and

{ ∈ }× ×…×t
J J JN1 2 , the number of reduced dimensions Ln,

= …n N1, 2, , and sparse tuning parameters λ λ,u v.
OUTPUT: two sets of sparse transformation matrices

{ ∈ }×Un
I Ln n and { ∈ }×Vn

J Ln n , where = …n N1, 2, , .
Algorithm:
Initialize { }Un and { }Vn with identity matrices;

Calculate the centered tensors ˜
t and ˜

t by Eqs. (9) and (10);
repeat



7:

8:

9:

10:

11:

12:
13:

14:

15:

Table 1
the numbers of samples in CASME database.

Micro-expressions Ha Di Su Te Re

Number of samples 10 44 20 69 38
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for n¼1 to N do

Calculate ( )n and ( )n by Eqs. (12) and (13);

Calculate ( )Cxy
n , ( )Cxx

n , and ( )Cyy
n by Eqs. (14), (15), and (16),

respectively;

Calculate ( )C n by Eq. (24);

Do SVD on = = ∑( )
= dC UDV u vn T

i
L

i i i
T

1
n ;

for j¼1 to Ln do
repeat
16:

17:

18:
19:

20:

21:

22:

23:

24:

25:
26:
27:

Fig. 2. Illustration of the convergence of the first iterative loop.

Fig. 3. The process of micro-expression registration.

Fig. 4. A demonstration of the frame sequence in a micro-expression in C
˜ =u uold j and ˜ = dv vold j j;

˜ = ( ˜ ) { | ˜ | − }λ( ) ( )v C u 0 C u 1sign max ,new
n T

old J
n T

old J2n
v

n
;

Normalize ˜ = ˜ ∥ ˜ ∥v v v/new new new ;

˜ = ( ˜ ) { | ˜ | − }λ( ) ( )u C v 0 C v 1sign max ,new
n

old I
n

old I2n
u

n
;

Normalize ˜ = ˜ ∥ ˜ ∥u u u/new new new ;
until ∥ ˜ − ˜ ∥ < ϵu unew old u and ∥ ˜ − ˜ ∥ < ϵv vnew old v

= ˜ ∥ ˜ ∥( )u u u/j
n

new new ; = ˜ ∥ ˜ ∥( )v v v/j
n

new new

update = −( ) ( ) ( ) ( ) ( ) ( ) ( )C C u C v u vn n
j
n T n

j
n

j
n

j
n T ;

end for

= [ … ]( ) ( ) ( ) ( )U u u u, , ,n n n
L
n

1 2 n
;

= [ … ]( ) ( ) ( ) ( )V v v v, , ,n n n
L
n

1 2 n
;

end for
Calculate J by Eq. (39)

until ∥ − ∥ < ϵJ Jpre
3.3. Feature extraction and classification

For each sample t and its LBP code t , we project them into
the feature space by

= × × × ⋯ × ( )( ) ( ) ( )U U U 40t
feature

t N
N

1
1

2
2

3

and

= × × × ⋯ × ( )( ) ( ) ( )V V V 41t
feature

t N
N

1
1

2
2

3

Then, t
feature and t

feature are vectorized and concatenated to form
the final feature vector. Here, f i

c is denoted as the feature vector of
ith sample in cth class.

For a test sample test and its LBP code test , we obtain its feature
vector ftest by using the above method. We choose the nearest-
neighbor classifier which uses the Euclidean distance to measure the
similarity and identify the target label of each test sample:

( ) = ∥ − ∥ ( )d f f f f, 42test i
c

test i
c

F

The test is assigned to cth class according to its closest class center f i
c.
ASME. The apex frame presents at approximately 100 ms.



Table 2
Micro-expression mean recognition accuracies (%) of STCCA, 3D-CCA, MPCA, and DTSA3 in CASME. (mean7std. Bold numbers denote the highest recognition accuracies and
teletype numbers denote the lowest recognition accuracies.)

q Methods Classifiers × ×5 5 5 × ×10 10 10 × ×20 20 20 × ×30 30 30 × ×40 40 40 × ×50 50 50 × ×60 60 60 Baseline

q ¼ 3 STCCA NNC 33.3176.08 34.2578.06 35.0076.72 34.13 77.50 33.9877.51 34.0777.62 34.31 77.70 32.6877.76
SVM 21.1470.27 21.0870.00 21.0870.00 21.3670.53 24.4973.07 27.9875.28 29.8576.32

3D-CCA NNC 21.5473.22 29.4077.16 24.4379.19 22.80711.33 22.08710.68 24.4679.97 27.83710.00
SVM 21.8475.55 29.6176.76 23.89710.27 22.9576.60 24.4377.85 28.1078.84 29.1078.35

MPCA NNC 19.8573.39 19.25 73.65 16.20 712.16 16.90711.85 15.18711.90 14.19 711.70 22.08710.40
SVM 20.4277.13 20.0077.92 18.3478.28 17.9878.24 17.4778.74 17.1178.94 16.1477.94

DTSA3 NNC 25.54 73.13 26.5774.28 28.8676.39 32.4776.78 36.1777.93 37.59 77.23 37.5378.04
SVM 24.4674.06 24.6474.43 26.8476.87 29.6777.14 31.2378.64 32.7778.68 33.2878.82

q ¼ 4 STCCA NNC 35.6275.80 36.1277.06 35.7177.28 35.8177.12 35.9077.38 35.8477.34 35.8477.36 35.3777.40
SVM 21.1270.00 21.1270.00 21.1270.00 21.7770.82 26.0272.40 30.8473.79 31.8675.15

3D-CCA NNC 25.3774.85 31.9676.05 26.96710.00 26.06712.20 26.34711.22 29.9479.95 31.8377.16
SVM 22.9276.13 29.4778.46 27.3977.15 27.2075.17 29.7575.94 29.9476.51 28.5776.77

MPCA NNC 20.75 73.16 20.81 72.98 15.25712.14 15.96713.12 15.90712.63 17.83714.10 23.8879.36
SVM 21.3776.98 23.3575.96 23.8578.86 21.7479.99 21.77710.44 23.3578.78 20.6879.38

DTSA3 NNC 25.4373.22 27.3073.61 30.3474.98 34.7874.01 38.6674.58 40.40 75.18 40.4775.51
SVM 23.6075.37 24.4776.12 25.5677.54 28.1477.08 30.7176.51 33.2377.19 33.2975.97

q¼5 STCCA NNC 36.0675.56 37.8575.40 37.1575.69 36.28 75.78 36.3575.52 36.3175.62 36.4775.69 35.5175.49
SVM 21.1970.14 21.1570.00 21.1570.00 21.6770.53 26.3571.81 30.1673.27 32.4474.46

3D-CCA NNC 27.2874.49 32.6374.64 26.70711.23 25.67710.90 31.4779.55 36.6077.19 37.2175.54
SVM 25.7776.33 30.6776.23 24.1778.21 24.2977.60 27.0277.40 31.8376.48 32.5676.33

MPCA NNC 19.97 72.98 19.78 74.44 17.15 715.60 15.90 716.17 14.13 713.70 19.10714.80 23.62712.68
SVM 22.6975.08 22.5376.05 22.3778.14 21.89710.17 22.12710.06 23.4677.68 16.73710.37

DTSA3 NNC 26.7674.07 27.4773.99 30.0074.10 33.9174.26 37.1875.51 39.39 76.01 39.17 76.37
SVM 24.9476.66 22.7975.59 25.5476.55 28.94 77.15 30.9678.57 32.8278.72 33.5678.91

q¼6 STCCA NNC 38.1575.54 37.6875.72 38.2575.09 36.4975.58 36.5275.55 37.0275.44 36.9275.84 35.4075.58
SVM 21.1970.00 21.1371.99 21.1970.00 22.1271.15 25.9672.76 30.4675.25 32.6876.49

3D-CCA NNC 28.2874.57 35.5075.92 23.11712.89 22.85711.62 28.25711.61 33.7477.65 35.1376.31
SVM 25.1775.97 34.9376.12 27.1576.82 28.0876.23 30.7077.33 34.8377.65 35.7676.33

MPCA NNC 20.43 73.43 20.33 73.96 9.44 79.79 10.03 712.52 12.91 714.53 19.14 717.30 23.54 713.72
SVM 22.3875.22 25.3375.60 27.8176.73 26.5278.98 24.1477.80 24.0776.36 23.7777.19

DTSA3 NNC 26.4274.59 28.3873.47 31.7575.65 34.0475.09 37.6576.07 39.97 75.15 40.53 75.99
SVM 25.8677.23 24.0177.57 23.4876.72 25.7376.54 29.6778.30 31.5677.75 33.0178.14

q¼7 STCCA NNC 40.07 75.06 41.20 75.14 40.65 75.61 39.59 75.43 39.7675.48 39.5275.64 39.7675.51 38.7776.05
SVM 21.6871.84 20.7971.99 21.2370.00 22.1270.89 27.1672.87 32.5073.51 35.9675.10

3D-CCA NNC 32.7474.80 38.3975.51 21.95711.66 21.92710.78 29.38710.44 37.4374.84 39.1473.63
SVM 27.5776.32 34.2175.40 25.6578.31 25.4579.04 31.6479.43 37.5076.46 38.3976.20

MPCA NNC 20.7973.38 21.5474.18 11.95713.04 8.97711.51 10.03 712.45 14.42714.12 23.2979.38
SVM 25.1075.64 25.0075.46 23.9775.93 25.6277.22 24.1878.10 26.1076.50 18.84711.00

DTSA3 NNC 28.4673.86 30.2174.91 34.1474.96 37.0574.47 41.3075.02 42.9574.76 42.5774.92
SVM 27.9577.38 25.7977.28 21.8877.23 25.3479.37 26.58711.37 31.64710.28 31.2779.53

Fig. 5. A demonstration of small difference in gray value and large difference in LBP
code. (For interpretation of the references to color in this figure caption, the reader
is referred to the web version of this paper.)

S.-J. Wang et al. / Neurocomputing 214 (2016) 218–232224
3.4. Discussion on convergence

There are two iterative loops in Algorithm 1. One is from line
6 to line 27, and another is from line 13 to line 19. We first discuss
the convergence of the second iterative loop. We used all of the
data in Section 4.2 as the training data to investigate the con-
vergence behavior. The convergence threshold ϵu and ϵv are set as
0.01. The sparse tuning parameters λu and λv are set as 0.05. The
number of reduced dimensions L1, L2 and L3 are set as 5.

Fig. 1 illustrates the convergence of the second iterative loop.
The loop is not converging in the ( )t n j9, 3, 5 case. However, this
does not influence the convergence of the corresponding next loop
(the ( )t n j10, 3, 5 case). Among the six cases illustrated in Fig. 1,
except for the ( )t n j9, 3, 5 case, the second iterative loop always
converges. The loop does not converge in several cases. However,
this does not influence the final result. In practice, we set a maximal
iterative time to address the non-convergence case. The maximal
iterative time is set at 500.

The first iterative loop is a general framework for tensor sub-
space analysis. In reality, the convergence of many tensor subspace
analysis algorithms cannot be proven; therefore, the classification
results based on these algorithms are shown to be stable after
rounds of iterations as illustrated in these previous papers (e.g.,
DATER [27], 2D LDA [44]) [45]. Here, we demonstrate the con-
vergence behavior in Fig. 2. After more than 30 iterations, the
value of ρ shows periodic oscillation around the a larger value.



Table 3
The results of t-test between STCCA and DTSA3 in CASME.

(p,t) × ×5 5 5 × ×10 10 10 × ×20 20 20 × ×30 30 30 × ×40 40 40 × ×50 50 50 × ×60 60 60

q¼3 (0.000, 6.73) (0.000, 5.11) (0.000, 4.71) (0.195, 1.34) (0.084, �1.82) (0.007, �3.02) (0.008, �2.98)
q¼4 (0.000, 8.85) (0.000, 6.15) (0.000, 4.79) (0.447, 0.78) (0.037, �2.25) (0.001, �3.94) (0.001, �4.02)
q¼5 (0.000, 8.43) (0.000, 8.04) (0.000, 8.52) (0.019, 2.56) (0.467, �0.74) (0.014, �2.72) (0.042, �2.18)
q¼6 (0.000, 8.63) (0.000, 6.21) (0.000, 4.77) (0.053, 2.07) (0.359, �0.94) (0.016, �2.64) (0.002, �3.60)
q¼7 (0.000, 9.70) (0.000, 9.33) (0.000, 6.39) (0.004, 3.26) (0.044, �2.16) (0.001, �3.75) (0.001, �3.95)
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4. Experiments

4.1. Data preprocessing

To address the large variations in the spatial appearance of faces,
all faces are normalized to a template face M, which is a frontal face
image with a neutral expression. First, the template face is marked
with 68 landmarks ψ( )M using the Active Shape Model (ASM) [46].
Second, the first frame of a sample micro-expression clip was
marked with 68 landmarks ψf1, and the 2D geometric transforma-
tion of the template face is estimated as ψ ψ= TM f1, where T is the
transformation matrix. Third, the remaining frames are registered
to the template face by applying the transformation T. Because
there is only slight head movement in the video clip, the transfor-
mation T can be used in all of the frames in the same video clip. The
sizes of each frame of samples are normalized to 163�134 pixels.
Fig. 3 illustrates the registered process.

4.2. CASME

The Chinese Academy of Sciences Micro-Expression (CASME)
database [47,48] includes 195 spontaneous facial micro-expressions
recorded by two 60 fps cameras. These samples were selected from
more than 1500 facial expressions. The selected micro-expressions
either had a total duration less than 500 ms or an onset duration
(time from onset frame to apex frame3) less than 250 ms. These
samples are coded with the onset, apex and offset frames and are
tagged with the action units (AUs) [49]. In this database, micro-ex-
pressions are classified into 7 categories (happiness, surprise, disgust,
fear, sadness, repression and tense). An example is shown in Fig. 4.

We selected only 5 classes of the micro-expressions (happiness
(Ha), surprise (Su), disgust (Di), repression (Re) and tense (Te)),
amounting to 181 samples for the following experiments, because
the number of samples of fear and sadness was insufficient. Ta-
ble 1 lists the sample numbers of each selected class.

In these samples, the frame number of the shortest and longest
samples are 10 and 68, respectively. The frame numbers of all
samples are normalized to 70 using linear interpolation. The size of
each frame is normalized to 163�134 pixels. Thus, each sample was
normalized to a third-order tensor with a size of × ×163 134 70. To
utilize the 3D-CCA and STCCA methods, LBP-TOP is used on the
micro-expression samples to obtain corresponding LBP video clips.
The radii of axes X and Y were set as 1, and the radius of axis T was
set as 2. The numbers of neighboring points in the XY, XT and YT
planes were all set as 4. The basic LBP was used in the LBP coding.
Thus, each LBP video clip may be treated as a third-order tensor with
a size of × ×161 132 66. We perform STCCA and 3D-CCA on the
micro-expression video clips and their corresponding LBP video
3 The onset is the first frame, which changes from the baseline (typical neutral
facial expressions). The apex is the frame that reaches the highest intensity of the
facial expression. The offset is the last frame of the expression (before turning back
into a neutral facial expression). In some cases, the facial expressions faded slowly,
and the changes between frames were difficult to detect by the naked eye. For such
offset frames, the coders only coded the last obvious frame as the offset frame
while ignoring the nearly imperceptible changing frame(s).
clips, and project them to × ×5 5 5, × ×10 10 10, × ×20 20 20,
× ×30 30 30, × ×40 40 40, × ×50 50 50, and × ×60 60 60 di-

mensions, respectively. We used two classifiers: Nearest Neighbor
Classifier (NNC) and Support Vector Machine (SVM). The RBF kernel
is adopted for the SVM.4 MPCA and DTSA3 are also used to reduce
the dimensions of the micro-expression video clips in this experi-
ment. We randomly split the micro-expression samples so that q
( = )q 3, 4, 5, 6, 7 samples for each class are used as the training set,
and the remaining samples are used as the testing set. This process
is repeated 20 times. The mean recognition accuracies and standard
deviations are listed in Table 2. Table 2 also lists the baseline, which
is calculated by concatenated the samples and their LBP codes
without dimensionality reduction. The accuracies of the baselines
are almost lower 5% then the highest accuracies of the dimension-
ality reduction methods. Furthermore, the baselines need huge
memory to calculate. For CASME 2, calculating the baseline leads to
out of memory.

DTSA3 showed the best performances with larger projected di-
mensions. DTSA3 is a discriminant reduced dimension method and the
discriminant information can further improve the recognition accuracy.
However, STCCA obtains higher recognition accuracies than DTSA3
when the projected dimensions are smaller. STCCA outperforms DTSA3
for larger training sets. MPCA typically exhibit the worst performances.
Thus, MPCA is not suitable for micro-expression recognition. This poor
performance occurs because the eigenvectors corresponding to smaller
eigenvectors are discarded, and these eigenvectors include the brief
and subtle motion information. So, MPCA is not conducted on the
following experiments. When solving STCCA, the eigenvectors corre-
sponding to smaller eigenvectors are also discarded. Why does STCCA
suit to recognizing micro-expression. The reason is there is a great
difference in LBP codes between two small difference gray values. In
Fig. 5, the difference between red point and green point is only 1. The
corresponding difference in LBP code is 128. So, the eigenvectors cor-
responding to smaller eigenvectors in STCCA maybe not include the
brief and subtle motion information of micro-expression.

STCCA and DTSA3 almost are the two best performances on each
case. Here, we use t-test to perform statistical significance test be-
tween STCCA and DTSA3 on different q and reductional dimension
cases. Table 3 lists ( )p t, of t-test. When <p 0.005, ( )p t, is Bold in
the table. When the reductional dimensions are smaller, the per-
formances of STCCA are significance better than those of DTSA3.
Although the performance of DTSA3 is better than those of STCCA
on the larger projected dimensions, these better performances are
not always significance.

Fig. 6 shows the bar graphs of these mean recognition ac-
curacies. For STCCA, 3DCCA and DTSA3, the performances of NNC
are better than that of SVM. Thus, in the following experiments,
we only use NNC as a classifier. With the increasing projected
dimensions, the performance of DTSA3 is dramatically better in
the NNC cases, perhaps because the eigenvectors of DTSA3 contain
more discriminant information. The performance of STCCA is not
particularly sensitive to the projected dimensions, which is why
STCCA can achieve a good performance with relatively small
4 We used LIBSVM. The parameter is set as ‘� t 2’



Fig. 6. Bar graphs of micro-expression mean recognition accuracies in CASME.
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projected dimensions.
We also investigate the computational efficiencies of STCCA,

3D-CCA, MPCA and DTSA3. Fig. 7 illustrates the amount time
required to project to dimensions of × ×5 5 5. DTSA3 and MPCA
are drastically more time-consuming than 3D-CCA and STCCA. 3D-
CCA is more efficient than STCCA because STCCA has a sparsity



Fig. 7. The training times for training models on CASME.

Fig. 8. A demonstration about the F1 score.
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procedure which can be time-consuming.
Now, some researchers [50,51] used optical flow to extract

features of micro-expressions. Optical flow infers the motion of
objects by detecting the changing intensity of pixels between two
image frames over time. In a video clip, a pixel at location ( )x y t, ,
with intensity ( )I x y t, , will have moved by Δx, Δy and Δt between
the two frames. According to the brightness constancy constraint,
we have

( ) = ( + Δ + Δ + Δ ) ( )I x y t I x x y y t t, , , , 43

Assuming that the movement is small, the image constraint at
( )I x y t, , can be developed with a Taylor series to obtain:

( )
τ( + Δ + Δ + Δ ) = ( ) + ∂

∂
Δ + ∂

∂
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where τ is a higher-order infinitesimal. From these equations it
follows that:
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which results in
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where Vx and Vy are the x and y components, respectively, of the
velocity or optical flow of ( )I x y t, , . Thus, between two frames with
distance Δt , the optical flow value of a pixel at time t is expressed
Table 4
Micro-expression mean recognition accuracies (%) of STCCA in CASME. (mean7std. RL m
means the result of STCCA between the optical flow features and .)

q Codes × ×5 5 5 × ×10 10 10 × ×20 20 20

q¼3 RL 33.3176.08 34.2578.06 35.0076.72
OF 23.5274.37 23.6777.14 24.7679.78

q¼4 RL 35.6275.80 36.1277.06 35.7177.28
OF 23.9876.58 24.7878.44 24.4179.52

q ¼ 5 RL 36.0675.56 37.8575.40 37.1575.69
OF 22.2175.16 22.7978.16 25.1378.27

q¼6 RL 38.1575.54 37.6875.72 38.2575.09
OF 24.7076.20 25.0778.36 27.7279.26

q¼7 RL 40.0775.06 41.2075.14 40.6575.61
OF 23.0876.52 24.6978.87 25.1779.74
as a two-dimensional vector:

[ ] ( )V V, 48x
t

y
t T

Many methods can be used to compute the optical flow field [52].
In our implementation, we use the method presented in [53].

Given a micro-expression video clip with × ×163 134 70 size,
we calculated its optical flow and got two 3rd-order tensors with

× ×163 134 69 size and . STCCA is conducted on and .
Table 4 lists the results of STCCA between the optical flow features

and . The performances of STCCA between raw video clip and
corresponding its LBP code are better than those between the
optical flow features and .

For the problem that the classes are not balanced in CASME,
we use the F1 score to address it. The F1 score is defined as fol-
lows:

= × ×
+ ( )F

Precision Recall
Precision Recall

2
491

Suppose there are C class, cpc is the number of correct positive
results of cth class, apc is the number of all positive results of cth
class and rpc is the number of positive results that should have
been returned of c class (See Fig. 8). Precision and Recall are de-
fined as follows:

∑=
( )=

Precision
C

cp

ap
1

50c

C
c

c1

and
eans the result of STCCA between raw video clip and corresponding its LBP code. OF

× ×30 30 30 × ×40 40 40 × ×50 50 50 × ×60 60 60

34.13 77.50 33.9877.51 34.0777.62 34.3177.70
25.4579.66 26.2079.58 26.7879.74 27.8379.25
35.8177.12 35.9077.38 35.8477.34 35.8477.36
23.8279.46 24.7579.98 24.5379.82 24.4779.78
36.2875.78 36.3575.52 36.3175.62 36.4775.69
25.6478.99 25.4579.80 25.74710.04 26.92710.60
36.4975.58 36.5275.55 37.0275.44 36.9275.84
27.7279.52 28.48710.47 27.65710.53 28.05711.36
39.5975.43 39.7675.48 39.5275.64 39.7675.51
25.24711.12 24.45711.54 24.66712.10 24.83712.25



Table 5
The F1 scores of STCCA, 3D-CCA, MPCA, and DTSA3 in CASME. (Bold numbers denote the highest scorers.)

q Methods × ×5 5 5 × ×10 10 10 × ×20 20 20 × ×30 30 30 × ×40 40 40 × ×50 50 50 × ×60 60 60

q¼3 STCCA 0.1217 0.1255 0.1282 0.1251 0.1245 0.1250 0.1258
3D-CCA 0.0804 0.1064 0.0797 0.0582 0.0636 0.0849 0.1039
MPCA 0.0730 0.0702 0.0386 0.0367 0.0320 0.0286 0.0497
DTSA3 0.0925 0.0970 0.1033 0.1184 0.1318 0.1372 0.1382

q¼4 STCCA 0.1320 0.1324 0.1316 0.1318 0.1323 0.1322 0.1321
3D-CCA 0.0933 0.1141 0.0797 0.0659 0.0806 0.1012 0.1144
MPCA 0.0775 0.0781 0.0370 0.0325 0.0306 0.0314 0.0428
DTSA3 0.0940 0.0999 0.1120 0.1283 0.1431 0.1493 0.1503

q¼5 STCCA 0.1358 0.1407 0.1403 0.1376 0.1376 0.1378 0.1384
3D-CCA 0.1036 0.1222 0.0820 0.0610 0.1023 0.1300 0.1351
MPCA 0.0753 0.0753 0.0409 0.0365 0.0331 0.0368 0.0494
DTSA3 0.0995 0.1036 0.1134 0.1263 0.1376 0.1442 0.1443

q¼6 STCCA 0.1428 0.1419 0.1434 0.1351 0.1358 0.1377 0.1374
3D-CCA 0.1035 0.1300 0.0683 0.0696 0.0930 0.1261 0.1322
MPCA 0.0753 0.0749 0.0217 0.0226 0.0233 0.0391 0.0477
DTSA3 0.0991 0.1053 0.1196 0.1266 0.1391 0.1478 0.1505

q¼7 STCCA 0.1492 0.1491 0.1519 0.1475 0.1488 0.1474 0.1484
3D-CCA 0.1184 0.1411 0.0560 0.0531 0.0963 0.1366 0.1448
MPCA 0.0790 0.0798 0.0320 0.0208 0.0224 0.0318 0.0478
DTSA3 0.1046 0.1132 0.1265 0.1383 0.1536 0.1580 0.1589

Fig. 9. A demonstration of the frame sequence in a micro-expression in CASME 2. The three rectangles above the images show the right inner brow (AU 4) in zoom in mode.
The movement is more obvious in video play than in picture sequence.

Table 6
The numbers of samples in CASME 2 database.

Micro-expressions Ha Di Su Te Re

Number of samples 32 60 25 102 27
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∑=
( )=

Recall
C
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C
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The F1 score reaches its best value at 1 and worst at 0. Table 5 lists
the F1 scores of STCCA, 3D-CCA, MPCA, and DTSA3 in CASME.
Table 7
Micro-expression mean recognition accuracies (%) of STCCA, 3D-CCA, and DTSA3 in CA
teletype numbers denote the lowest recognition accuracies.)

q Methods × ×5 5 5 × ×10 10 10 × ×20 20 20

q ¼ 5 STCCA 29.1674.79 29.6474.60 30.7074.38
3D-CCA 22.7474.05 26.8175.05 27.47714.87
DTSA3 25.7074.66 26.3174.23 27.1574.76

q¼10 STCCA 31.7373.78 34.6273.59 34.8774.14
3D-CCA 28.4975.27 33.9874.03 23.67 714.95
DTSA3 27.1773.04 29.5473.15 32.6072.99

q¼15 STCCA 35.8274.36 36.9973.53 36.2674.11
3D-CCA 32.2873.42 34.1574.22 31.4674.23
DTSA3 28.6072.38 31.3273.95 33.1674.48

q¼20 STCCA 35.1073.46 37.6074.01 38.3274.56
3D-CCA 35.7574.74 36.5174.23 35.0774.26
DTSA3 29.0172.60 32.7172.91 35.0773.40
4.3. CASME2

The CASME2 database [54] includes 246 spontaneous facial
micro-expressions recorded by two 200 fps cameras. These sam-
ples were selected from more than 2500 facial expressions.
Compared with CASME, this spontaneous micro-expression data-
base is improved in terms of an increased sample size, fixed illu-
mination, and higher resolution (both temporal and spatial). This
database selected micro-expressions that had either a total dura-
tion of less than 500 ms or an onset duration (time from onset
frame to apex frame) of less than 250 ms. These samples are coded
with the onset and offset frames, and tagged with the action units
(AUs) and emotions. An example is shown in Fig. 9.
SME2. (mean7std. Bold numbers denote the highest recognition accuracies and

× ×30 30 30 × ×40 40 40 × ×50 50 50 × ×60 60 60

30.9774.68 31.0274.85 30.4874.98 30.6874.70
25.59714.95 26.67714.28 26.67 714.96 27.58 714.64
30.4574.86 30.7274.73 31.5674.88 31.4974.93
35.3673.98 35.05 74.18 35.1374.26 35.0073.98
24.18718.39 24.92717.44 23.47717.91 21.91717.73
32.9374.01 32.6874.52 33.4473.83 34.1173.97
36.4974.50 36.7574.61 36.9674.38 36.7074.56
19.24713.99 18.77717.73 18.30717.71 17.95717.89
33.7773.73 35.0673.79 35.5073.85 35.5673.77
37.7774.71 37.6474.39 38.3974.98 37.8174.34
29.6679.46 19.97713.35 14.01714.52 17.19715.41
35.2473.74 35.0073.46 36.2373.89 36.8274.04



Table 8
The results of t-test between STCCA and DTSA3 in CASME2.

(p,t) × ×5 5 5 × ×10 10 10 × ×20 20 20 × ×30 30 30 × ×40 40 40 × ×50 50 50 × ×60 60 60

q ¼ 5 (0.006, 3.11) (0.017, 2.63) (0.009, 2.90) (0.693, 0.40) (0.815, 0.24) (0.359, �0.94) (0.443, �0.78)
q¼10 (0.000, 4.52) (0.000, 4.85) (0.032, 2.32) (0.012, 2.78) (0.001, 3.81) (0.029, 2.35) (0.220, 1.27)
q¼15 (0.000, 6.03) (0.000, 4.83) (0.005, 3.14) (0.006, 3.13) (0.063, 1.97) (0.148, 1.51) (0.157, 1.47)
q¼20 (0.000, 6.96) (0.000, 5.37) (0.005, 3.20) (0.038, 2.23) (0.010, 2.88) (0.065, 1.96) (0.259, 1.16)

Table 9
The results of t-test between STCCA and 3D-CCA in CASME2.

(p,t) × ×5 5 5 × ×10 10 10 × ×20 20 20 × ×30 30 30 × ×40 40 40 × ×50 50 50 × ×60 60 60

q ¼ 5 (0.000, 6.39) (0.007, 3.05) (0.354, 0.95) (0.146, 1.52) (0.239, 1.22) (0.313, 1.04) (0.405, 0.85)
q¼10 (0.014, 2.72) (0.530, 0.64) (0.002, 3.53) (0.008, 2.95) (0.011, 2.84) (0.005, 3.15) (0.002, 3.53)
q ¼ 15 (0.001, 3.78) (0.021, 2.52) (0.000, 4.21) (0.000, 4.71) (0.001, 4.10) (0.000, 4.32) (0.000, 4.24)
q ¼ 20 (0.577, �0.57) (0.238, 1.22) (0.004, 3.29) (0.002, 3.55) (0.000, 5.20) (0.000, 6.75) (0.000, 5.55)

Fig. 10. The bar graphs of micro-expression mean recognition accuracies in CASME 2.

Fig. 11. The training times for training models in CASME 2.
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In this database, micro-expressions are classified into 5 categories
(happiness, surprise, disgust, repression and tense5). Table 6 lists the
number of samples in each class. Among these samples, the frame
numbers of the shortest and longest samples are 24 and 146, re-
spectively. The frame numbers of all samples are normalized to 150
using linear interpolation. The sizes of each frame are normalized to
163�134 pixels. Thus, each sample was normalized to a third-order
tensor with a size of × ×163 134 150. The experimental setting is
5 The term “others” in CASME 2 is equivalent to “tense” in CASME, thus we use
the same label as in CASME.
the same as that of the CASME database. We randomly split the
micro-expression samples so that q ( = )q 5, 10, 15, 20 samples for
each class are used as the training set, and the remaining samples are
used as the testing set. This process is repeated 20 times. The mean
recognition accuracies and standard deviations are listed in Table 7.

3D-CCA only obtains the best performance in × ×5 5 5 and
q¼20 case, and DTSA3 obtains the best performances in cases of
larger projected dimensions and smaller sample size. In the ma-
jority of cases, STCCA performs the best. The CASME 2 database is
larger than the CASME database. Thus, STCCA performs better than
DTSA3 with the discriminant information when the training
samples size is larger.

Table 8 lists the results of the t-test between STCCA and DTSA3.
With lower reductional dimension and larger training sample size,
the performances of STCCA are significance better than those of
DTSA3. Table 9 lists the results of the t-test between STCCA and
3D-CCA. With larger reductional dimension and larger training
sample size, the performances of STCCA are significance better
than those of 3D-CCA.

The bar graphs of these mean recognition accuracies are illu-
strated in Fig. 10. Similarly, we also investigate their computational
efficiencies for CASME 2. Fig. 11 illustrates the amount of time
required project to dimensions of × ×5 5 5. Compared to Fig. 7,
the time consumption dramatically increases with the increasing
number of training samples.

To further increase the size of the training set, we combine
CASME and CASME 2. Each sample was normalized to a third-order
tensor with a size of × ×163 134 150. We randomly split the micro-
expression samples so that q ( = )q 15, 20, 25, 30, 35 samples for
each class are used as the training set and the remaining are used as
the testing set. This process is repeated 20 times. The mean



Table 10
Micro-expression mean recognition accuracies (%) of STCCA, 3D-CCA, and DTSA3 in CASME and CASME2. (mean7std. Bold numbers denote the highest recognition ac-
curacies and teletype numbers denote the lowest recognition accuracies.)

q Methods × ×5 5 5 × ×10 10 10 × ×20 20 20 × ×30 30 30 × ×40 40 40 × ×50 50 50 × ×60 60 60

q¼15 STCCA 31.7873.76 35.4873.63 37.1473.98 37.6873.94 36.7873.81 36.6974.33 36.4974.14
3D-CCA 31.9074.39 34.7473.58 33.6872.87 29.3674.92 27.6774.35 28.76 74.69 30.1473.95
DTSA3 26.05 72.22 29.05 72.44 32.66 72.92 33.6873.09 34.9073.64 36.1473.50 36.2973.41

q ¼ 20 STCCA 36.6172.88 38.3272.38 39.9172.54 39.9772.47 40.0972.61 39.7672.13 38.1272.07
3D-CCA 36.0973.85 37.5874.44 37.2974.17 35.02 73.31 33.17 73.12 33.90 72.86 35.15 72.53
DTSA3 27.29 72.96 30.67 73.05 35.12 72.14 35.7373.26 37.5573.19 38.2973.10 39.20 73.26

q¼25 STCCA 36.5472.24 38.8172.61 39.4773.51 40.2573.39 40.5673.13 39.8573.27 39.2473.09
3D-CCA 40.5174.26 37.6373.29 39.0173.84 38.5973.28 36.9574.18 35.83 73.88 36.04 73.30
DTSA3 27.88 72.38 31.44 72.54 35.23 72.84 36.21 73.16 36.71 73.17 37.3072.37 38.2072.63

q¼30 STCCA 37.6473.60 40.2272.83 41.4672.49 41.7972.86 42.3372.79 42.0472.95 41.1272.90
3D-CCA 41.7773.87 38.7573.24 40.1873.05 40.9272.69 40.0272.88 38.5272.71 38.30 72.60
DTSA3 27.26 73.05 32.11 72.91 36.30 72.93 37.09 72.54 38.19 73.45 38.36 73.38 39.3173.17

q¼35 STCCA 36.2777.42 41.6172.44 42.3672.52 43.0672.30 43.4772.76 42.9472.76 42.1273.17
3D-CCA 40.7973.51 39.5873.17 42.1672.76 42.6272.71 41.6172.20 40.8772.75 39.46 72.63
DTSA3 28.77 72.51 33.87 73.07 38.39 72.32 38.83 72.40 40.06 72.51 40.32 71.51 41.6172.37

Fig. 12. Bar graphs of micro-expression mean recognition accuracies in CASME and CASME 2.

Table 11
The results of t-test between STCCA and DTSA3 in CASME and CASME2.

(p,t) × ×5 5 5 × ×10 10 10 × ×20 20 20 × ×30 30 30 × ×40 40 40 × ×50 50 50 × ×60 60 60

q¼15 (0.000, 6.30) (0.000, 6.63) (0.000, 5.13) (0.000, 4.68) (0.018, 2.60) (0.391, 0.88) (0.710, 0.38)
q¼20 (0.000, 8.53) (0.000, 8.20) (0.000, 6.34) (0.000, 5.25) (0.005, 3.14) (0.077, 1.87) (0.209, �1.30)
q¼25 (0.000, 11.61) (0.000, 14.00) (0.000, 6.20) (0.000, 5.46) (0.000, 6.39) (0.000, 4.66) (0.073, 1.90)
q¼30 (0.000, 9.95) (0.000, 11.31) (0.000, 6.11) (0.000, 6.30) (0.000, 4.84) (0.000, 4.67) (0.045, 2.14)
q¼35 (0.001, 4.17) (0.000, 9.41) (0.000, 4.92) (0.000, 5.54) (0.000, 4.68) (0.000, 4.83) (0.497, 0.69)

Table 12
The results of t-test between STCCA and 3D-CCA in CASME and CASME2.

(p,t) × ×5 5 5 × ×10 10 10 × ×20 20 20 × ×30 30 30 × ×40 40 40 × ×50 50 50 × ×60 60 60

q¼15 (0.903, �0.12) (0.402, 0.86) (0.001, 4.03) (0.000, 7.20) (0.000, 7.86) (0.000, 6.06) (0.000, 8.14)
q¼20 (0.652, 0.46) (0.383, 0.89) (0.006, 3.06) (0.000, 5.82) (0.000, 7.78) (0.000, 7.94) (0.000, 6.21)
q¼25 (0.002, �3.70) (0.154, 1.49) (0.341, 0.98) (0.000, 4.40) (0.000, 4.90) (0.000, 4.89) (0.000, 4.98)
q¼30 (0.001, �3.87) (0.071, 1.91) (0.053, 2.06) (0.316, 1.03) (0.002, 3.51) (0.000, 6.98) (0.000, 6.51)
q¼35 (0.017, �2.61) (0.004, 3.24) (0.718, 0.37) (0.529, 0.64) (0.006, 3.11) (0.006, 3.06) (0.001, 3.95)
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recognition accuracies standard deviations are listed in Table 10,
and their bar graphs are illustrated in Fig. 12. 3D-CCA exhibit the
best performances in the × ×5 5 5 cases, whereas STCCA per-
formed the best in the other cases. STCCA performs worse than 3D-
CCA particularly in cases of small projected dimensions, because
when the projected dimensions are rather small, the sparsity cause
many of the coefficients of the projected dimensions to be zeros,
and important information may be lost in the this process. Tables 11
and 12 list the corresponding results of t-test. The similar conclu-
sion can be drawn.
5. Conclusions

We have presented STCCA, a novel method of dimensionality
reduction, to recognize micro-expressions. STCCA seeks a subspace in
which the correlation between micro-expression data and their
corresponding LBP code data is maximal. The solution of STCCA is
sparse. The experiments on twomicro-expression databases revealed
that STCCA outperformed the existing methods. Furthermore, MPCA
is not suitable for micro-expression recognition because the eigen-
vectors corresponding to smaller eigenvectors are discarded, and
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those eigenvectors include brief and subtle motion information.
We will introduce discriminant information to STCCA to further

improve recognition accuracy.
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