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Abstract—Micro-expression (ME) is a significant non-verbal communication clue that reveals one person’s genuine emotional state.
The development of micro-expression analysis (MEA) has just gained attention in the last decade. However, the small sample size
problem constrains the use of deep learning on MEA. Besides, ME samples distribute in six different databases, leading to database
bias. Moreover, the ME database development is complicated. In this article, we introduce a large-scale spontaneous ME database:
CAS(ME)3. The contribution of this article is summarized as follows: (1) CAS(ME)3 offers around 80 hours of videos with over
8,000,000 frames, including manually labeled 1,109 MEs and 3,490 macro-expressions. Such a large sample size allows effective MEA
method validation while avoiding database bias. (2) Inspired by psychological experiments, CAS(ME)3 provides the depth information
as an additional modality unprecedentedly, contributing to multi-modal MEA. (3) For the first time, CAS(ME)3 elicits ME with high
ecological validity using the mock crime paradigm, along with physiological and voice signals, contributing to practical MEA. (4)
Besides, CAS(ME)3 provides 1,508 unlabeled videos with more than 4,000,000 frames, i.e., a data platform for unsupervised MEA
methods. (5) Finally, we demonstrate the effectiveness of depth information by the proposed depth flow algorithm and RGB-D
information.

Index Terms—Micro-Expression, Micro-Expression Databases, CASME, Depth Information, Ecological Validity, Multi-Modality.
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1 INTRODUCTION

A S a proverb says, you may know a person’s face but
not his mind. Therefore, it is challenging for a person

to have an insight into other individual’s states of mind.
While in the field of computer vision, with the advent of
deep learning technology, human parsing and face recogni-
tion have been significantly developed [1], [2], [3], [4], and
its accuracy rate has reached beyond human capabilities.
Furthermore, it has been widely used in complex practical
applications, such as face unlocking of smartphones, face
recognition access control, etc. Besides person identification,
the research on face-based mind understanding is emerg-
ing for decades and is highly challenging. For instance,
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facial shapes could reveal the personality [5]; facial expres-
sion (FE) and color could reveal human emotion indepen-
dently [6]. Personality and emotions are essential manifes-
tations of human minds and play a crucial role in human
understanding and human-computer interaction. Moreover,
the research topics on emotional states that involve other
complex minds, such as deception [7], depression diagno-
sis [8], etc., have also seen significant interest and progress
recently.

In his book The Expression of the Emotions in Man and
Animals [9], Charles Darwin revealed that the expression of
human emotions is difficult to be suppressed. When an in-
dividual fails to suppress his or her expression, there will be
involuntary expressions. As shown in Fig. 1, neuropsycho-
logical research has found that voluntary and involuntary
expressions are controlled by two different neural pathways,
i.e., the pyramidal tract and extrapyramidal tract, respec-
tively [10], [11]. The confrontation between voluntary and
involuntary expressions could produces micro-expressions
(MEs) [12]. ME may be leaked due to voluntary inhibition
before expressing emotions or truncated after common ex-
pressions are expressed [10]. Therefore, theoretically, ME is a
brief, local and subtle FE that often appears in a high-stakes
state [13], with a very short duration, less than 500ms.

The involuntary characteristic of an ME makes it an
important external indicator revealing one’s genuine emo-
tions and intentions [14]. ME analysis has many appli-
cations, particularly in national security [14] and medical
care [15]. Among them, deception detection based on ME
stands out. Based on the cognitive psychology research, the
meta-analysis found that telling lies will be accompanied
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by some emotional and uncontrollable reactions [16]. And
when people try to hide their genuine emotions, ME may
occur. Under the experimental conditions, these MEs have a
stable correlation with deceptive behaviors [17].

In order to apply ME in practical applications, Ekman
et al. developed A tool named Micro-Expression Training
Tool (METT) [18] to train people on the detection of MEs.
However, even after the METT training, the ME detec-
tion accuracy for human being remains less than random
level [19]. Moreover, the accuracy of the naked-eye ME
detection would be influenced by the emotional context [20].
Therefore, objective and efficient automatic ME Analysis
(MEA) is required for further ME practical applications. As
illustrated in Fig. 2, MEA consists of ME spotting (MES) and
ME recognition (MER), respectively. MES is to detect clips
when MEs occur on facial videos, i.e., to determine whether
videos contain MEs, and if so, to locate the onset and offset
frames of ME clips. In contrast to face detection, which is
to determine a suitable closed rectangular region containing
the face image on two-dimensional (2D) plane, MES is to
determine a one-dimensional closed interval containing ME
as appropriate as possible on the one-dimensional timeline
of videos. Meantime, MER refers to classifying a given
ME clip into a psychologically specified emotional category.
Research on the MEA has developed since the turn of the
century. Fig. 3 shows the trend of the number of MEA
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Fig. 1. Neural tracts for FE. Voluntary and involuntary expressions are
controlled by the pyramidal tract (blue trajectory) and extrapyramidal
tract (red trajectory), respectively. In particular, both the pyramidal sys-
tem and the extrapyramidal downward transmission begin in the pre-
central gyrus of the cerebral cortex. In the pyramidal tract, the cortical
nucleus tract (blue trajectory) is a neural pathway that controls facial
muscles and bones and is responsible for voluntary expression. Mean-
time, for the extrapyramidal tract, the complete pathway (red trajectory)
travels from the cerebral cortex through the brainstem to areas such as
the red nucleus and substantia nigra, then through cranial nerves and
down to the facial nucleus, responsible for unconscious expressions.
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Fig. 2. ME analysis (MEA) process, including MES and MER, respec-
tively locating the moment when the ME occurs in the video and classi-
fying the ME video clip.

research articles. This number is low but is increasing.
Especially in recent two years, deep learning methods are
blooming in the MEA field. However, the performance has
not been greatly improved because of the limitation of the
small sample size (SSS) problem of ME.

Databases are vital for the research of artificial intelli-
gence in various fields [21], [22], [23], [24]. Similarly, for
the MEA automation, ME samples are the basis of the
research. Current commonly used ME databases include
CASME series: CASME [25], CASME II [26], CAS(ME)2 [27],
SMIC [28], SAMM [29] and MMEW [30]. The total sam-
ple size in these databases is small, limiting the develop-
ment of deep learning in MEA. Furthermore, these samples
were distributed across six different databases, leading to
database biases [31], including specific preferences during
the construction process and inconsistent perceptions on
the expression categories of annotators in each dataset.
Even though differences in data collection can facilitate
generalization of the feature learning process, they still
impact studying MEs. Meanwhile, the CASME series, al-
though large in scale, has less domain variation in the
acquisition environment, source of human subjects (demo-
graphics/age), etc. Regarding the annotation, the sentiment
categories could be uniformly labeled by specific rules [32],
which can alleviate the problem of data bias and improve
the performance of expression classification up to a certain
point. However, still, the existence of data bias prevented
this magnitude of sample size from being maximized to its
fullest extent.

However, creating a ME database is a particularly chal-
lenging task, facing three major difficulties on ME elicita-
tion, collection, and annotation.

1) ME elicitation is the process to elicit the emotion of
the subject and leads to a leak of ME. Compared with FE
databases in which most samples are posed expressions, it
is more complex to induce effective MEs. Since ME appears
when a person wants to hide his/her true emotion, ME
generation is a spontaneous process. Therefore, collecting
spontaneous ME samples is a more appropriate way to
conduct studies close to real scenario applications. The
most common method is the neutralization paradigm, i.e.,
asking subjects to watch strong emotional stimuli (see sub-
section 2.1 for explanation) and try to neutralize the face the
whole time or suppress their FEs when they realized there
is one. Therefore, the elicitation must be a professionally
designed psychological process, and the requirement of FE
suppression makes MEs extremely rare during the recording
process. Besides, as chances of that ME appears on a neutral
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Fig. 3. MEA research trend. The number of articles on MEA is increasing
yearly, mainly in the area of MER (bottom column). MES research has
not yet attracted sufficient attention (top column).



3

face are not high in practical applications, the neutralization
paradigm directly causes a low ecological validity (see sub-
section 2.1 for details) for ME samples, which still has a big
gap between the real-life MEA.

2) ME collection is a complicated process due to the
inherent characteristic of MEs. Unlike the distinctive facial
movement of FEs, MEs and neutral faces are almost in-
distinguishable by a single image. Hence, MEA needs to
be performed on videos, i.e., importing the modality of
temporal information. Meanwhile, since ME is a subtle facial
movement, environmental noise, such as illumination vari-
ations, would affect the MEA performance. Thus, current
MEA methods still require a large amount of data collection
in a variable-controlled environment further to enhance the
ME feature extraction capability without interference.

3) ME annotation is a very laborious and time-
consuming process. As ME is a brief, subtle local facial
movement, it is not as evident as FE. It is hard to be detected
in the video with naked human eyes. The coder, i.e., the
person who labels the data, needs to be professionally
trained. And, it usually takes half an hour to mark a one-
minute video. Meantime, there are two kinds of ME labels:
Action Unit (AU) and emotion class. The relation between
AU and emotion for ME is still ambiguous, requiring fur-
ther exploration. This uncertainty leads to that the current
sample classification criteria are inconsistent. Besides, due
to the eliciting paradigm, the subject may conceal the true
emotion by covering it with blinking, smiling, or other facial
movements, i.e., ME might be masked. It also increases the
complexity of the annotation process.

These three difficulties cause two significant challenges
for ME databases: the SSS problem and low ecological valid-
ity. To address these two challenges, we make the following
contributions in this article. First, inspired by human visual
perception, we introduce depth information modality into
the ME database for the first time. We also designed the
psychological experiment to demonstrate that the depth
information is helpful for human visual perception to ME.
Second, we recruited 216 subjects, recording 1,300 labeled
and 1,508 unlabeled long videos. CAS(ME)3 contains not
only RGB images but also depth information, physiological
and voice signals, i.e., CAS(ME)3 is a multi-modal ME
database. The large volume of data provides a platform
for multi-modal self-supervised learning based MEA. More-
over, CAS(ME)3 has a database volume comparable to the
total number of currently available databases. Meanwhile,
since samples are collected in the same environment and
labeled by the same labelers, CAS(ME)3 allows MEA meth-
ods to be validated on larger scale data while effectively
avoiding database bias. Last but not least, we collected ME
samples through the mock crime paradigm, building a high
ecological validity ME database.

In summary, we released a third-generation spontaneous
ME database: CAS(ME)3 1 . The cubic notation represents
the introducing of depth information modality to MEA and
the third generation ME eliciting paradigm (see detailed
explanation in subsection 2.2) to construct a high ecological
validity database.

1. To download CAS(ME)3, please visit http://casme.psych.ac.cn.

The inability to effectively learn the subtle, brief, and
localized ME feature is the pain point the research commu-
nity is facing. Researchers could benefit from our database
to advance deep learning-based multi-modal MEA meth-
ods and improve the performance and robustness of the
network. In addition, the high ecological validity of multi-
modal data allows further research on the implementation
of MEA in practical applications and physiologically-based
mechanisms of ME.

The article is organized as follows: Section 2 introduces
the related works on ME databases and current auto-
matic MEA methods; Section 3 investigates the influence
of depth information on human visual perception through a
psychological experiment; Section 4 describes the detailed
information of CAS(ME)3; Section 5 presents the bench-
mark methods and experimental results for MES and MER,
database comparison, and multi-model analysis on part C
respectively; Section 6 concludes the paper.

2 RELATED WORKS

This section first introduces the psychological terminology
explanation to understand our latter psychological analysis
and experiments better. Then, the published ME databases
and the related works on MEA methods are presented.

2.1 Terminology Explanation
We conducted psychological studies in this article to demon-
strate the effect of depth information on human visual per-
ception and the feasibility of mock crimes on ME elicitation.
This subsection explains some psychological terminologies
for better readability.

Ecological validity: The functional and predictive re-
lationship between people’s performance on a set of ex-
periment and their behavior in a variety of real-world
settings [33]. In the field of computer vision, the ecological
validity of the data reflects the closeness to the real data in
the practical scenario.

Stimuli: The materials that subjects need to cognitively
process and respond to, generally including text, sound,
pictures, and video, etc. [34].

Reaction time: The time taken for the subject to com-
plete a task, i.e., from the start of playing the stimuli until
the subject responds to it. [35].

2.2 ME Databases
Ecological validity is a crucial factor in determining whether
the ME database is close to or suitable for MEA in real
complex scenarios. Moreover, it is directly related to the
paradigm of MEs elicitation. Thus, we divided the pub-
lished databases into three generations in terms of ME elici-
tation methods with gradually increasing ecological validity.

1) The first generation: In the early stages of MEA,
ME samples were collected from actors who tried to pose
fleeting FEs after observing standard expression samples.
USF-HD [36] and Polikovsky’s database [37] are two posed
ME databases. However, ME is considered spontaneous and
difficult to be disguised. Besides, spontaneous and posed
samples have different elicitation method and theoretical
neural basis. The spontaneous ME samples are collected

 http://casme.psych.ac.cn
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through the elicitation paradigm that based on the ME gen-
eration mechanism [12]. Meanwhile, the emotion is elicited
in a state, including three complete emotional dimensions:
the subjective experience, external expression, and physio-
logical arousal. The process is associated with brain regions
that control emotions, such as the frontal cortex. In contrast,
since subjects are asked to mimic the specific expression
action, posed expressions include only the external perfor-
mance dimension and are controlled by the brain’s motor
cortex. In daily life, real expressions are an effective means
for us to understand others’ emotions/feelings. Thus, in-
ducing spontaneous ME samples is necessary to improve
the database’s ecological validity and develop MEA studies
with robustness.

2) The second generation: In response to the above
concerns, researchers with psychological backgrounds tried
to elicit MEs with emotional stimuli. It was found that
watching emotional stimuli while neutralizing faces, i.e.,
neutralization paradigm is an effective method to elicit
spontaneous MEs without many irrelevant facial move-
ments. The MEs in databases such as CASME series [25],
[26], [27], SMIC [28], SAMM [29] and MMEW [30] were
collected in this way. Such ME samples have several merits,
the most important of which is that they are spontaneous.
Moreover, they are well-controlled in illumination, environ-
ment, and neutral faces without talking. The majority of
current MEA are conducted on these samples, especially
the CASME series databases, as the elicitation process was
designed by professional psychologists. The CASME series
has been requested by more than 600 research teams in over
50 countries, and more than 80% of the MEA articles have
used at least one of these databases for method validation.
However, this eliciting paradigm still has shortcomings. The
MEs in 2nd generation databases were collected in lab situa-
tions (though spontaneous) but are supposed to be different
in real life. They are actually not ”natural” enough if we
would like to put MES and recognition in practical fields.
First, the subjects were required to neutralize their faces
while watching stimuli. There should be various methods
to conceal FEs, e.g., masking with smiles. Second, these
lab situations elicit the emotional response by presenting
stimuli but not interpersonal communication. However, in
real life, FEs are a social signal that are seen more often in
interpersonal interactions rather than occurring alone. It is
in such situations that we need to hide our genuine FEs
occasionally. Third, watching emotional episodes is actually
not a high-stakes situation, though the subjects may have
motivations to conceal their FEs with reward/punishment
configurations. The feelings were supposed to be different
from lying to a person in a high-stakes situation.

3) The third generation: Addressing above constraints,
collecting MEs samples from more ecological situations is
inevitable for the further development of MEA research. In
psychology, there are already well-established paradigms.
For instance, eliciting paradigms through mock crime, dic-
tator games, and prisoner’s dilemma could elicit ME with
high ecological validity. Husak et al. published an in-the-
wild database MEVIEW [38], in which the samples are video
clips from poker games and TV interviews downloaded
from the Internet, with a total of 40 labeled MEs. Although
these samples are from real scenarios and the ecological

validity is high, there are too many uncontrollable factors,
such as zooming in and out, head movement, hand-over-
face occlusions, etc. Based on the current state of MEA
research, ME samples still need to be collected in well-
controlled laboratory scenarios. Mock crime is a high-risk
stimulus, in contrast to neutralization paradigm. Therefore,
it is more suitable for ME elicitation and further research
related to its application in lie detection. Hence, we released
a sub-set of ME video samples collected by mock crime
paradigm in CAS(ME)3, improving ecological validity and
eliminating uncontrollable factors.

2.3 Automatic ME Analysis
2.3.1 MES
MES methods can be divided into video clip spotting and
frame spotting; the latter focuses on locating the apex
frame [39]. Nevertheless, even if the final output is different,
the algorithms and the related features of these two still
have commonalities.

Concerning the algorithm, feature difference (FD) rep-
resents the first attempt at MES, and algorithms combined
with machine learning (ML) are the current research trend.
Since 2014, many research teams [?], [26], [32], [40] have
used FD to spot spontaneous ME in videos. The main
process of this idea is first to calculate the difference between
the frame features in a sliding time window; then, determine
the most significant movement by setting a threshold for
the entire video. However, the ability to distinguish MEs
from other facial movements remains weak, especially in
long videos containing many other movements and noise.

For this reason, methods combined with ML are grad-
ually becoming the mainstream of MES. For instance, [38]
and [41] used the SVM classifier to spot ME frames. Besides
these, there are some MES methods that incorporate deep
learning, such as MESNet [42], LSSNet [43]. However, fewer
than 20 papers using ML for MES have been published,
and the sample size limits these algorithms. The numbers
of samples in published databases are not large enough to
train a high-performing classifier.

2.3.2 MER
Unlike MES, all the MER methods use machine learning for
emotion classification, and can be categorized into two main
categories: handcrafted feature methods and deep learning
methods. LBP-TOP [44], HOG [45], and OF [39] based meth-
ods are the most common handcraft feature methods. The
MER performance has been greatly improved through con-
tinuous exploration of the spatial-temporal features suitable
for MEs. Yet, due to the ME characteristics, these methods
are not robust enough to realize MER in real scenes.

In recent years, MER combined with deep learning has
become a major trend, e.g., STRCN [46], the low-complexity
recurrent CNN [47], LEARNet [48], 3D-CNN [49], the joint
local and global information learning network [50], etc. In
addition, to further address the limitation of the small-
sample problem on deep learning-based MER, many ap-
proaches introduce transfer learning to enhance the perfor-
mance of ME feature extraction, such as [51], [52]. The MEA
approaches based on deep learning are limited by the SSS
problem for three main reasons. First, deep network models
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involve a large number of parameters, and the SSS prob-
lem of MEs can cause overfitting problems of the model.
Second, although there are many transfer-learning-related
methods, the improvement of the MEA performance is not
particularly significant, and the effect is limited. Finally,
compared with the algorithms for expression recognition
and face recognition, the number of samples and network
parameters for MEA are limited by the ME sample size.

As noted above, a novel ME database with a large
amount of ME samples is necessary for further development
in combination with deep learning. However, capturing and
especially labeling MEs is very challenging. Moreover, there
have been studies to enhance the performance of model
mining features through multi-modality, thus alleviating the
limitations of SSS problems [53]. Therefore, while trying our
best to capture the RGB modal video, we expand the ME
information with more geometric features by capturing data
of one more modality, i.e., depth information.

3 HUMAN VISUAL PERCEPTION ON ME WITH
DEPTH INFORMATION

The series of cognitive processes that organize and interpret
the sensation information of objects or events in the external
world is known as perception. It includes visual perception,
auditory perception, haptic perception, olfactory perception,
taste perception, and so on. In particular, 80% of the ex-
ternal information acquired by humans comes from visual
perception [54]. In this section, we investigated the role of
depth information on the human visual perception of ME
by comparing 2D perception and three-dimensional (3D)
perception. The experimental results showed that depth
information helped the human recognition of ME.

3.1 Method
The proposed psychological experiment was based on a
within-subject design, which means that each subject par-
ticipates in both 2D perception and 3D perception.

3.1.1 Subjects
To avoid the effects of cognitive ageing [55] on the depth
visual perception study, we selected, we recruited thirty-
one undergraduate students (9 males and 22 females; Mean
(M) = 23.5 years, Standard Deviation (SD) = 1.75 years). (See
supplementary file for the study on aged subjects.) They
voluntarily participated in this experiment, with payment.
And they all had a normal or corrected-to-normal vision
and no known psychiatric disorders. Specifically, all studies
involving human subjects in this article adhered to the
Declaration of Helsinki and were approved by the institu-
tional Review Board of the Institute of Psychology, Chinese
Academy of Sciences.

3.1.2 Stimuli
After weighing the emotional sample distribution, reso-
lution and sample form (RGB or grayscale) of different
databases, 30 ME samples were chosen from the CASME
database [25], including six emotion types. In order to
eliminate the influence of background information, only the
cropped face area was retained in the 2D video stimulation.

We converted 2D video stimulation to 3D video stimulation.
Finally, 60 2D and 3D ME video clips were produced as the
stimuli. They were presented in a 2.3 × 1.4 square meters
(m2) screen, placed 3.5 m in front of the subject, by a BenQ
TH6370 projector (support 3D mode). Subjects were asked
to wear BenQ 3D Active Glasses in the experiment, with 3D
mode on for 3D ME videos and off for 2D videos. Before
the experiment began, subjects were seated in a lab with
sound insulation. The light intensity of the environment
was 0.26 Lux and 288.73 Lux when the projector was turned
off and on, respectively. Fig. 4 illustrates apparatus and lab
environment.

3.1.3 Procedure

Subjects were required to watch 2D and 3D ME video
stimuli and respond to related questions. The procedure for
both tasks was the same. To exclude practice effects [34], the
order of the two tasks was counterbalanced across subjects.

Before starting the formal experiment, the subjects
should first complete three practice trials to get familiar-
ized with the procedure. The three stimuli for the practice
were also selected from the CASME database and were not
repeated in the formal experiment. Therefore, data from
practice were not included in the result analysis. Further-
more, with the random order of two tasks and the practice
trials, we can eliminate the effect of subjects’ curiosity or
familiarity with the videos on the experiment.

In this experiment, when the subjects pressed the space
bar, they were presented with a ME video clip, played
only once. Then, the subjects were asked to answer three
questions about emotional valence, emotional type, and
emotional intensity quickly and accurately. Fig. 5 presents
the experimental procedure in detail.

3.2 Result

The experimental results were analyzed using one-way
Analysis of Variance (ANOVA) statistics analysis [56], as
listed in Table 1. We calculated the mean and standard
deviation of the subjects in 2D and 3D, respectively, and
compared the differences in reaction time (RT) of emotion
recognition and intensity ratings (see Fig. 6). RT was sig-
nificantly shorter in 3D than in 2D conditions for both
evaluations of emotion valence and emotion type. The video
with 3D ME was also rated with higher intensity. Our results
indicated that subjects might benefit from 3D MEs, i.e., ME
videos with depth information for MER.

Fig. 4. Lab configuration. The subject wore 3D Active Glasses to watch
3D ME videos. The subject sat at a chair and adjusted the table to the
appropriate height. A BenQ TH6370 projector was located under the
table and projected to a screen that was placed 3.5 meters away from
the subject. The subject used a Bluetooth keyboard to respond. The
control computer was placed at the ride side of the subject.
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TABLE 1
The comparison result for 2D and 3D artificial MER performance analysis. In the context of the same number of subjects, for ANOVA analysis, if p
is less than 0.05, there is a significant difference between the two cases; the larger the F(1,30), the more reliable the experimental results are likely

to be; η2p corroborates that the experimental results do not occur by chance. (See theoretical explanations of F(1,30), p and η2p in [57])

Intensity Reaction time for emotion valence Reaction time for emotion type
M SD F(1,30) p η2p M SD F(1,30) p η2p M SD F(1,30) p η2p

2D 3.48 1.65 4.35 <0.05 0.01 2.15 1.46 15.46 <0.001 0.05 2.32 2.49 7.93 <0.01 0.753D 3.64 1.58 1.83 1.26 1.91 1.60

3.3 Discussion

This study investigated the influence of human visual per-
ception on MER by appending depth information. The
results show that depth information could facilitate emotion
recognition, indicated by shorter RT and a higher intensity
rating for 3D videos. This may be explained by that 3D
videos provide additional specific information to the cog-
nitive process of 2D and 3D information [58]. Specifically,
in eye-tracking studies, there is a significant difference in
attention distribution of gazing on faces between 2D and
3D visualization [59]Moreover, electrophysiological studies
have also demonstrated that viewing 3D stimuli increased
the activation degree of the specific stream in the visual sys-
tem, whose function is depth information perception [60].
Functional magnetic resonance imaging (fMRI) studies have
also proven that the human parietal cortex that controls the
above-mentioned neural stream plays an essential role in
processing depth information [61]. Depth information can
help people build a robust facial characterization [59], so
that the face in stereoscopic vision is closer to the human
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face in reality. Hence, depth information makes facial fea-
tures easier to be recognized.

As demonstrated above, depth information helps to en-
hance the human perception of ME. Inspired by this, we will
introduce depth information into MEA.

4 CAS(ME)3 DATABASE

The results of the psychological experiment in Section 3
demonstrate that depth information improves human ME
cognitive behavior. Moreover, with the popularity of depth
cameras, research methods based on depth information will
be widely used and become an inevitable research trend in
computer vision. Depth has proven to be very useful in ar-
eas such as face recognition [62], expression recognition [63],
etc. RGB-D images can be used to construct a 3D model
of a human face. The human face is a continuous smooth
surface in all directions. Thus, these points, which have
the same depth value, form a continuous curve. The curve
is called the depth contour. The geometric change of depth
contours on the facial surface could be caused by a muscular
action which means the face undergoes deformation and
the distance from the camera changes. As demonstrated
by the depth contours in Fig. 7, the depth information
changes visibly when an expression occurs on the face.
(See supplementary material for a video demo showing the
depth contour variation for a ME video clip.) Therefore, in-
troducing depth information can help the MEA algorithms
to detect changes in human faces more sensitively.

Based on the above research, we construct a ME database
with depth information: CAS(ME)3, consisting of parts:
Part A, Part B, and Part C. The male/female ratio in the
CAS(ME)3 database is 112/135, including all three parts.
The mean age of the subjects is 22.74 and the SD is 1.75. First,
for the research continuity of MEA in the databases based on
a second-generation elicitation paradigm, we collected ME

Fig. 7. Depth contours on the face during a facial ME. On the subject’s
face, from onset to apex frames, an AU 14 (Dimpler) occurs at the corner
of the mouth. In both lower face frames (onset and apex) with depth
contour, the same colors have the same depth values, varying from
510mm to 545mm. In the corners of the mouth and cheek regions, the
contour lines have different shapes in the two frames (as indicated by
yellow arrows). This difference confirms that the FE of the face can be
reflected in the depth information.
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samples in Part A and B using the same paradigm. There are
100 subjects in Part A, and each of them was asked to watch
13 emotionally stimuli and keep their faces expressionless,
and each viewing was recorded. Hence, there is a total of
1,300 video clips. In these clips. 943 MEs and 3,143 MaEs
are labeled by professional coders. In Part B, there are
116 subjects and 1,508 unlabeled video clips. We hope that
labeled clips in Part A and unlabeled clips in Part B provide
a data platform for developing ME unsupervised or self-
supervised learning. In Part C, we used the third generation
of ME eliciting paradigm, i.e., mock crime, to elicit ME with
higher ecological validity and finally succeeded in capturing
166 MEs and 347 MaEs from 31 subjects. Compared to the
high ecological validity database MEVIEW, we doubled the
number of ME samples and also labeled MaEs. In addition,
during the recording process, we also collect ME-related
physiological signals such as heart rate and voice signals
to enrich multi-modal MEA. Table 2 lists the overview of
CAS(ME)3, around 80 hours of videos in total, i.e., about
eight million frames, including 1,109 MEs and 3,490 MaEs.

4.1 ME Collection Settings

As ME is a brief, subtle facial expression, the ME samples are
collected in a strictly controlled environment to concentrate
on MEA and avoid other disturbing factors.

The laboratory settings are shown in Fig. 8. We used
four 24W LED lights. The LED lights are equipped with
ballast to prevent AC power from causing the LED lights
to flicker, affecting the light’s stability. We use a set of
2 LED lights with a reflector umbrella to focus the light
on the subject’s face. Furthermore, the reflector umbrella
can provide more stable and soft lighting. This lighting
preparation setting can greatly avoid the influence of light
strobe on the shooting during the recording process. We
used an Intel® RealSenseTM D415 camera to record the
subjects’ facial movements, with a resolution of 1280 × 720
pixels. We record RGB color images and the corresponding
depth information simultaneously during the process of
inducing ME. Due to the limitation of the device, the frame
rate is 30 frames rate par second (fps). However, at 30fps,
the frame rate interval of ME is in the range of 6-15 frames,
which can already retain the ME temporal variation. There
is a green curtain about 1.5 meters behind the subject. It
provides the discriminant depth information between the
background (the curtain) and the foreground (the subject).
It also provides the discriminant green channel information
between skin color and non-skin color [64]. The information
only makes it convenient to crop facial area.

4.2 Part A: ME Data with Label

In the published databases, the introduction of deep learn-
ing did not substantially improve the MEA performance.
To verify the effectiveness of MEA combined with deep
learning, we collected a relatively large number of video
samples in the first two parts of the database based on the
second generation of ME eliciting paradigm compared to
the previous databases.

4.2.1 Eliciting Paradigm
Eliciting materials: We used 13 emotional video clips, which
were evaluated and selected as the stimuli to elicit MEs in
CASME series databases [25], [26], [27]. Each clip belongs to
a type of basic emotions2, either disgust, fear, sadness, anger,
or happiness. The number of videos for each emotion is 2,
4, 3, 2, and 2, respectively. Although there was no stimulus
specifically of the emotion type surprise, some scenarios in
the stimulus videos could induce the emotion of surprise in
the subjects. The duration of the videos ranges from 34 to
144 seconds.

Procedure: Each subject entered a configured lab and
was asked to be seated in front of a monitor where we would
later present the emotional stimulus video. The subject was
instructed that whenever they were aware that an expres-
sion is about to be expressed while watching videos, they
should immediately suppress it and try to keep a neutral
face. They were also required to keep their body and head
still during the same time. The Intel® RealSenseTM D415
camera has an important parameter, namely the minimum
operating distance (minZ), less than which the scene depth
information cannot be processed. To maximize the propor-
tion of the face in the frame during video recording at a dis-
tance greater than minZ from the camera, and to avoid noise
caused by bad exposure, we performed a head-position
calibration before presenting each video. The subject took
a brief break after watching a video. After watching each
video, the subject was asked to give a subjective report
on the video they just watched. The self-report method
requires subjects to assess their emotional experiences on
a rating scale, reflecting the true emotions within the subject
and quantifying the emotions. In contrast, MEA investigates
true emotions through facial expressions manifesting by
facial muscle movements. However, external expressions
and internal emotional experiences are not always perfectly
consistent. With the benefit of the self-report, it is possible
to make the external MEs correspond to the internal true
emotions during the labeling process. (The self-reported
questionnaire can be found in the supplementary file).

4.2.2 Annotation
In Part A, 1,300 videos belonging to 100 subjects are labeled
by professional coders. The annotation includes Action
Units (AUs) and the corresponding onset, apex, and offset
frames. First, to improve the efficiency, we built the coding
platform. Second, the coding process is introduced to ensure
the fairness and transparency of annotation.

The first step of ME annotation process is AU coding
frame by frame by coders. So, it is very challenging. One
possibility to improve this situation is to involve as many
ME or AU coders in manual coding as possible, regardless
of geography or time limitation. Therefore, We built a mul-
tiuser online coding platform, i.e., ME Coding and Sharing
System (MECSS) 3, bringing the possibility of building a
large-scale ME database off-site.

The AU annotation is performed based on Facial Action
Coding System (FACS) [65]. Two well-trained FACS coders

2. Main emotion means if 70% of the subjects or more chose a specific
emotion word, and the average emotional intensity score is greater than
3.5.

3. http://mecss.psych.ac.cn/

http://mecss.psych.ac.cn/
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TABLE 2
The overview of CAS(ME)3

Part Eliciting Paradigm Number of
ME

Number of
MaE

Number of
Subjects

Number of Videos
per Subject

Total Length of
Videos per Subject

A 2nd generation - Neutralization 943 3143 100 13 21.27 minutes
B 2nd generation - Neutralization N/A N/A 116 13 21.27 minutes
C 3rd generation - Mock crime 166 347 31 1 about 8 minutes

Total 1,109 3,490 247 Total video length about 80.7 hours

Intel® RealSense™
camera 
LED Lamp

Experimenter’s 
monitor 

( Recording )

LED lights 
with a reflector 
umbrella

Participant

Participant’s 
monitor
( Playing 

Elicitation 
Materials )

Depth Heat map

Color
Bar (m)

0

1

2

EDA
signal

Voice
signal

(mm)

Fig. 8. The left block shows the recording environment for CAS(ME)3 database. The upper right block illustrates the samples of RGB image and
depth map (Subject spNO.216 in Part A: Surprise with AU R1+R2); and the lower right block displays the samples of voice and electrodermal activity
(EDA) signals (Subject MC 11 in Part C: negative emotion with AU4).

coded the collected video samples frame by frame to deter-
mine the existence and duration of different AUs through
MECSS. Once it is confirmed that an AU has occurred, its
onset, apex, and offset also need to be determined.

According to the temporal characteristic of ME
(<500ms), the FEs are first divided into two types: MaEs
and MEs. Based on the obtained AU annotations, we need
to determine the starting and ending moments (onset and
offset) of their corresponding expressions to perform this
classification. Suppose there are K time-overlapping AUs
occurring in a time period, and for the kth of them, its
start and end time is (tAUk

1 ,tAUk
2 ), where k ∈ (1, ..,K). Then

the onset and offset frames of the FEs represented by these
AU combinations are obtained by the minimal and maximal
values of the AU moments, respectively, as shown in the
following formulas.

onset = min(tAU1
1 , ..., tAUK

1 )

offset = max(tAU1
2 , ..., tAUK

2 )
(1)

Since the frame rate of videos in CAS(ME)3 is 30 fps, the
number of frames for a 500ms video is 15. Therefore, MEs
and MaEs are separated based on the temporal duration:

FE type =

{
ME if foffset − fonset + 1 ≤ 15

MaE otherwise
(2)

where ft denotes the frame index of the moment t.
After identifying the onset, apex, and offset of ME, we

further classify ME video clips in order to analyze different
kinds of MEs with more specificity. To label the ME video
clip with emotion, the coder compared three emotion types
respectively based on the AU label, elicitation material,
and subject’s self-report of this video. The correspondence
between AU and emotion was referenced to the annotation

method in [26]. If at least two emotion types were consistent,
then the emotion type of the current ME video clip was
identified as the one that accounted for the majority. If none
of the three were consistent, then the emotion type of the
ME video clip was determined by the coder’s judgment
based on AU. Furthermore, some habitual behaviors should
be eliminated, such as frown when blinking or sniffing.

To be consistent with the emotion classification of macro-
expressions, we provide emotion labels based on six emo-
tion classifications for ME samples. Fig. 9 lists the number of
ME samples in each emotion class. The additional category
of ”Others” indicates MEs that have ambiguous emotional
meanings or that are difficult to be classified into the six
basic emotions.

However, there is more practical importance in clas-
sifying MEs according to four emotional categories (pos-
itive, negative, surprise, and other). Discovering negative
emotions hidden under positive expressions or vice versa,
such as covering the dagger with a smile, can help in lie
recognition or emotional understanding of interpersonal
interactions. Besides, this kind of classification is the cur-
rent popular classification method, avoiding the problem
of unbalanced samples distribution to a certain extent.
Specifically, in the CAS(ME)3, the criteria based on the
above-mentioned four emotion classifications are as follows.
Positive expression includes happy expressions, which are
relatively easy to induce and have obvious characteristics.
Negative expressions include disgust, sadness, fear, anger,
etc. These MEs are relatively difficult to distinguish, but they
are significantly different from positive MEs. Meanwhile,
surprise has no direct relationship with positive or negative
expressions, and expresses unexpected emotions, which can
be interpreted according to the context. The category of
”Others” has the same meaning as it in emotion classifi-
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cation based on six basic emotions.
The number of ME samples for Part A and Part C are

943 and 166, respectively, as listed in Table 2. The coding
reliability (R) is calculated as follows:

R =
N(C1 ∩ C2)

Nall
(3)

where the denominator and numerator represent the num-
ber of all MEs and the number of MEs coded consistently by
the two coders, respectively. Regarding the four-emotions
classification, R for Part A and Part C is 0.88 and 0.94,
respectively. And for the seven-emotions classification, the
coding reliability for Part A and Part C is 0.71 and 0.75,
respectively.

The two coders did not participate in the ME sample
video acquisition process and did not know the stimulus
material corresponding to the labeled videos.

As supplementary annotation information, we also pro-
vide the corresponding stimulus’s emotion and the feelings
indicated in the self-report. This combination of emotional
information from the subject and the eliciting environment
will help researchers carry out contextual FE research and
would be comprehensive support for interdisciplinary anal-
ysis of computer vision and psychology.

4.3 Part B: ME Data without Label
We recruited a total of 216 subjects to induce and collect their
MEs under the same experimental configuration. Except for
the 100 subjects in Part A, we found that the videos of the
remaining 116 subjects showed relatively severe frame drop.
We used the Intel® RealSenseTM D415 camera to capture
both depth and RGB information, experiencing frame drop
is a known likely effect to be encountered [66]. Due to the
serious frame drop during the recording process, accurate
manual ME annotation cannot be performed, and hence
these unlabeled videos comprise Part B. The male/female
ratio in part B is 53/63. In sum, 1508 unlabeled long
videos were obtained, amounting to 41 hours and 58 million
frames.

One of the solutions to alleviate the ME SSS problem
is unsupervised learning. As a form of unsupervised learn-
ing, self-supervised learning has become a hot topic. Self-
supervised learning refers to a learning method that uses
automatically generated labels to train the network explic-
itly [67]. The main problem of self-supervised learning is
how to design pretext tasks, that is, the automatic generation
of labels. It is a natural idea to use the additional depth
information or more ME related frames to generate labels
and construct self-supervised learning models for MEA.
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Fig. 9. Labeled ME samples distribution in Part A.

Even though the data in Part B has severe frame drop,
this situation does not affect the construction of the self-
supervised learning algorithm model on these data. First,
the quality of the single-frame images in the recorded videos
is not affected, and no information is dropped in the face
region. Therefore, multiple pretext tasks for spatial facial
feature learning can be designed based on part B. Second,
such videos with dropped frames can be implemented
by an unsupervised method similar to the one proposed
in [68] for temporal interpolation, and the construction of
a temporal feature extraction model is also achieved in
this way. Furthermore, since part A and B have the same
environment settings, a more optimal pre-trained model can
be constructed for boosting the MEA performance of part
A. In addition, to facilitate ME analysis based on unlabeled
data, we provide the emotion type of the stimulus material
corresponding to the unlabeled video, the number of which
is listed in Tabel 3. Furthermore, we provide subjects’ self-
reports after watching the stimulus material, the number
of emotions of which is also listed in Table 3. Both the
elicitation protocol of micro-expression and the cultural
background of the subjects can have an impact on the
resulting emotional perception. Therefore, the number of
stimuli and the number of subjects’ self-reported emotion
types do not necessarily correspond. In addition, the same
eliciting stimulus has different effects on different subjects.
For example, surprise is often associated with the perception
of ”unexpectedness ”, so it can be elicited in many videos.
Meanwhile, contempt is strongly related to the individual’s
personality, making it difficult to be elicited accurately.
Thus, it is challenging to select video stimuli with these two
kinds of emotions. These unlabeled videos and the labeled
videos in Part A together provide a data platform for the
development of self-supervised learning methods of MEA.

Real-life video samples have many uncontrollable fac-
tors, and it is not easy to measure whether the self-
supervised algorithm is helpful for MEs in some specific sce-
narios. However, the platform for self-supervised learning
based on all samples in Part A and B in CAS(ME)3 extends
the possibilities of applying MEA in real-life applications.
Meantime, MEs are important cues for lie detection. Hence
in Part C, we used the mock crime paradigm to induce ME
samples with higher ecological validity.

4.4 Part C: ME Data with High Ecological Validity
According to the Audience Effect for human smiling [69], peo-
ple are more likely to produce more expressions in socially
interactive situations than in solitary ones. Psychological ex-
perimental paradigms conducted in interactive, high-stakes
situations include mock crime, dictator games, prisoner’s

TABLE 3
Quantitative report of the reference to the emotional variety in Part B.
#stimuli denotes the number of videos for different emotion types of
stimuli; #self denotes the number of emotions reported by subjects

after watching the stimuli. H, D, F, A, Sa, Su and C denote Happiness,
Disgust, Fear, Anger, Sadness, Surprise and Contempt, respectively.

Emotion H D F A Sa Su C
#stimuli 232 232 464 232 348 NaN NaN

#self 136 388 263 278 315 260 78
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dilemma, etc. The mock-crime paradigm is considered the
”gold standard” for lie detection in laboratory research [70].

The mock-crime experimental paradigm divided the
subjects into a crime group and an innocent group. The
experiment was organized into two phases: mock crime and
interrogation. In the mock crime phase, subjects were asked
to choose autonomously whether to enroll in the crime
group or the innocent group. Subjects in the crime group
would perform a mock theft crime. During the interrogation
phase, the researcher would ask the subjects a series of ques-
tions directly related or unrelated to the crime information.
The crime information was derived from the layout of the
mock crime experiment room and the key clues, as shown in
Fig. 10a. Subjects in both the criminal and innocent groups
were given a choice to lie or not. A final judgment was made
about the subjects’ actual crime and lying [71].

We used the Concealed Information Test (CIT) [72]
during the interrogation phase, interrogating subjects with
both non-open-ended and open-ended questions. Com-
pared to open-ended questions, non-open-ended questions
were more effective in placing subjects in a high-stakes
environment and producing more MEs. Under laboratory
conditions, MEs were consistently correlated with deceptive
behavior [16]. It was also found that during CIT, liars and
non-liars differed in their cognitive activity when answering
relevant questions [73]. Liars had different perceptions of
criminogenic and criminally irrelevant information. In con-
trast, non-liars perceived both types of information equally.
There are also differences in the responses to neural signals
between the two [71]. Therefore, based on the subjects’
CIT experimental performance, it is possible to distinguish
between liars and non-liars effectively.

In addition, subjects were classified into the high- and
low-stakes environments according to whether they chose
to commit a crime or not, i.e., the crime group and innocent
group. This classification is supported by significant dif-
ferences in physiological data between the high-stakes and
low-stakes environmental groups. The experimental results
revealed the differences between MEs collected in these two
environments. Specifically, 18 subjects chose the high-stakes
environment, with a total of 113 MEs, i.e., 6.3 MEs per capita;
meanwhile, 13 subjects chose the low-stakes environment,
with 53 MEs, i.e., 4.1 MEs per capita. Thus, there is a trend
that the number of MEs collected in the high-stakes group
is higher than that of the low-stakes group.

As mentioned in subsection 4.3, multi-modal and multi-
channel data could help improve the performance of
self-supervised learning. The voice and physiological sig-
nals, including electrodermal activity (EDA) [74], heart
rate/fingertip pulse (ECG) [75], respiration (RSP) [76], and
pulse (PPG), were collected by the BIOPAC MP160 multi-
channel physiological instrument and the video recorder, as
shown in Fig 10b. And the essential parameters are listed
in Table 4. In the experiment, we explicitly informed the
subjects through the instructions that we were collecting
their physiological signals through the wearable device and
then determining whether or not they were lying through
the ”algorithm” (tricking the subjects, which we did not).
So the device strapped to them would lead the subjects
to believe that we would indeed use these techniques to
detect whether they were lying. In this way, the subjects

would produce emotional states (e.g., nervousness, anxiety)
similar to real lying scenarios. This configuration improves
the ecological validity of ME elicitation. Furthermore, These
signals with multi-modality during interrogation phase con-
tain abundant and useful features targeting spatio-temporal
variations of MEs. For instance, by analyzing the voice
signal, we can extract the corresponding sound quality
features, rhythmic features, and spectral correlation fea-
tures. These characteristics could reflect the person’s inner
emotions [77]. Besides, Reda et al. [78] combined features
from ME videos and the pulse rate variability to recognize
emotions.

For MEA, multimodal information can be used as super-
visory information for each other. For example, if there are
relatively distinct changes in one-dimensional signals such
as speech and physiological data, or depth information,
the moments of these changes can be used as a kind of
annotation information for the corresponding RGB videos.
Automated ME annotation could be achieved by design-
ing, for example, contrastive-learning-based self-supervised
learning model.

5 BENCHMARKS

In this section, we give benchmarks on MES and MER of
CAS(ME)3. The effect of depth on MEA is investigated in
two different forms. First, we extend optical flow (OF) to
depth flow to demonstrate how depth flow complements
motion information and improves the performance of MES.
Then, by comparing RGB and RGB-D feature learning, we
confirm that depth information, as an additional modality,
enhances feature extraction targeting to MEs and therefore
contributes to MER.

5.1 Pre-processing

We used the facial landmarks for the identification of the
face area and key regions belonging to ME. Their geometric

(a) Mock crime room setup. (b) Mock interrogation room
setup

Fig. 10. The CIT questions during the interrogation are related to key
clues in the red blocks and the room layout in Fig. 10a.

TABLE 4
Multi-modality signals, including physiological signals and voice signal.

Modality
Physiological signal Channel Type Sampling rate

(BIOPAC MP160 1 PPG

200HZmulti-channel 2 RSP
physiological 3 ECG
instrument) 4 EDA

Voice Signal
Sampling rate 48000HZ

# of sound channel 2
Coding 16bit PCM
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location information is not directly involved in the MES and
recognition computation and has a minimal impact on the
performance. Therefore, we directly choose the commonly
used Dlib [79] to detect landmarks.

Since the MEA research is video-based, the face in all
video frames needs to be cropped. For MES, long videos
are divided into short clips by a sliding window, and the
face cropping in each clip is based on the landmarks of the
first frame of the current segment. For MER, the cropping
of the whole ME video clip is based on the landmarks of
the onset frame. The reason for face cropping based on the
first frame instead of based on each frame is that ME is a
short, subtle facial movement. If the cropping is performed
frame by frame, continuous ME variation information might
be lost due to subtle landmarks changes.

Since the depth map and RGB image are acquired si-
multaneously and have the same resolution and frame rate,
the face region in the depth map is cropped by the same
landmarks in the corresponding RGB image.

5.2 Benchmark for MES
The OF based method is an effective method for MES.
However, the movement of the head can have a drastic
effect on the spotting of subtle MEs. After extracting the
OF features of the face region, it can be seen that this kind
of head motion is manifested as most pixels have a similar
OF. Therefore, the effect of such global head movement can
be eliminated by subtracting a value of OF fixation from
all pixel points. The efficiency of this idea was proven by
Zhang et al. [80], and they won first place in the MES task
of the ME Grand Challenge (MEGC2020). Besides, Liu et
al. [81] demonstrated that face alignment in the OF domain
could help improve the MES performance. Hence, in this
section, we propose the depth flow, which extends the OF
from the 2D plane to the 3D space by combing the depth
information. Furthermore, the depth flow is applied to the
MES framework proposed in [80] to verify the effectiveness
of depth information for MES.

5.2.1 Depth tensor
Firstly, we need to transform RGB-D information captured
by the Intel® RealSenseTM D415 camera to a third-order
depth tensor D ∈ RW×H×D, where W and H represent the
width and height of cropped face region and D means the
scene depth of the face. The depth tensor D is constructed
as follows:

D(x, y, z) =

{
I(x, y) if z = D(x, y)

0 otherwise
(4)

where, I,D ∈ RW×H are the gray image and the corre-
sponding depth information. The gray scale information is
utilized since the OF is calculated on the gray image.

As the depth flow is computed between two frames I1
and I2, we need two same size tensors DI1 and DI2 . W
and H of each frame are the same, D of each frame is
different. Furthermore, as illustrated in Fig. 11, inevitably,
the area preserved by the face crop may also include some
background areas, i.e., the curtain. The distance between the
camera and the curtain is about 1,500 mm. This results in
that the maximal value of D might equals to 1,500. Besides,

due to the recording environment (lighting conditions, tar-
get material, etc.) [82], and hardware effects and internal
algorithm errors of the sensor [83], depth data obtained
at some pixel points does not meet the confidence metric.
Instead of an incorrect value, the Intel® RealSenseTM D415
camera provides a zero value at these points [84]. Thus,
D(x, y) ∈ (0, 1500). According to Eq. 4, we can infer that
the number of zero elements in D is about 1500 times that
of non-zero elements in D. The depth tensor D is sparse.
Furthermore, the ME itself is sparse in the face region. The
superposition of the two sparsities leads to a decrease in ME
discriminability.

In the facial depth tensor D, non-zero elements almost
lie in the range of z from 500 to 700. Here, we use the
3σ criterion to compact D, i.e., supposing that the depth
distribution can be considered as a concentration within a
range of 3 standard deviations (3σ) above and below the
depth mean value (m), which means in the range of (m−3σ,
m+ 3σ).

m =
1

W ×H × 2

2∑
k=1

W,H∑
x,y=1

DIk(x, y)

σ =

√√√√ 1

W ×H × 2
×

2∑
k=1

W,H∑
x,y=1

[DIk(x, y)−m]2

(5)

where, DI1 ,DI2 ∈ RW×H are two matrices, of which the
elements are the depth values of frames I1 and I2. The
distribution of the extreme values is generally outside this
range. Therefore, the extreme values can be removed by
setting a threshold based on the mean and standard devi-
ation. However, as shown in Fig. 11, the distance between
the curtain and the face is greater than that between the face
and the camera. Thus, some 0 depth values lie in 3σ range
and are needed to be removed. We choose non-zero minimal
depth values of the two frames used for comparison. That
is, the scene depth D of facial depth tensors for I1 and I2 in
depth flow computation is obtained as follows.

D = max(⌈DI1 ,m+ 3σ⌉, ⌈DI2 ,m+ 3σ⌉)
−min(⌊DI1 , 0⌋, ⌊DI2 , 0⌋) + 1

(6)

where, max(A,B) denotes the maximal value in all ele-
ments of matrices A and B, and min(A,B) denotes the
minimal value in all elements of matrices A and B. ⌈A, b⌉
denotes the maximal value in elements less than b of matrix
A and ⌊A, b⌋ denotes the minimal value in elements greater
than b of matrix A. Compared with directly computing D
with max(DI1 ,DI2) and min(DI1 ,DI2), the value of D in

Fig. 11. Depth tensor illustration based on the ME data collection envi-
ronment.
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Eq. 6 is reduced from about 1,500 to 200. The operation of
removing extreme values makes D become more compact.

After obtaining the scene depth D, the facial depth
tensor could be built in a relative depth coordinate system.
Supposing D̃ is the difference between the original depth
information and the non-zero minimal depth values:

D̃Ik(x, y) = DIk(x, y)−min(⌊DI1 , 0⌋, ⌊DI2 , 0⌋) + 1 (7)

where k ∈ 1, 2, representing the frame index for depth flow
computation. Since the extreme values exist only for very
few pixels, to simplify the calculation, we directly assign
the relative depth values of these pixels to the minimum
value in the depth direction. Hence, the depth information
is updated as follow:

DIk(x, y)
∗ =

{
D̃Ik(x, y) if 0 < D̃Ik(x, y) ≤ D

1 otherwise
(8)

And the facial depth tensors D1 and D2 are constructed
based on Eq. 4 with DIk(x, y)

∗ :

Dk(x, y, z) =

{
I(x, y) if z = DIk(x, y)

∗

0 otherwise
(9)

5.2.2 Depth Flow
When we have two the same size facial depth tensors D1

and D2, we can compute the depth flow between them. In a
facial depth tensor, for a specific moment t, the brightness of
the voxel (x, y, z) is denoted as I(x, y, z, t), where x, y and
z are the coordinates in the horizontal, vertical and depth
directions in the space, t is the time series coordinate of the
tensor’s corresponding frame in the ME video clip. Then the
displacement of the voxel point between the two frames is
embodied as: I(∆x,∆y,∆z,∆t). Based on the conditions of
constant brightness and continuous time, the equalization of
the brightness of two frames is obtained as follows:

I(x, y, z, t) = I(x+∆x, y +∆y, z +∆z, t+∆t) (10)

The right side of Eq. 10 could be transformed based on
Taylor’s theorem:

I(x+∆x, y +∆y, z +∆z, t+∆t)

= I(x, y, z, t) +
∂I

∂x
dx+

∂I

∂y
dy +

∂I

∂d
dz +

∂I

∂t
dt+ σ

(11)

where σ denotes the second-order infinitesimal term, which
can be ignored. Replacing the right side of Eq. 10 with
Eq. 11, we could obtain the following formula:

I(x, y, z, t) = I(x, y, z, t)+
∂I

∂x
dx+

∂I

∂y
dy+

∂I

∂z
dz+

∂I

∂t
dt+σ

(12)
which means:

∂I

∂x
dx+

∂I

∂y
dy +

∂I

∂z
dz +

∂I

∂t
dt = 0 (13)

Then by dividing dt, Eq. 10 turns to:

∂I

∂x

dx

dt
+

∂I

∂y

dy

dt
+

∂I

∂z

dz

dt
+

∂I

∂t
= 0 (14)

By repesenting dx
dt , dy

dt , dz
dt , ∂I

∂x , ∂I
∂y , ∂I

∂z and ∂I
∂t as u, v, w, Iu,

Iv , Iw and It, we could get:

uIu + vIv + wIw = −It (15)

Here, (u, v, w) forms the depth flow df on voxel (x, y, z)
for further motion analysis. In order to calculate df , we
introduce the classic Lucas-kanade algorithm [85]. Assum-
ing that the depth flow for all the voxels in a small sliding
cube around a voxel is the same, and W is the coefficient
reflecting each voxel’s weight, we transform Eq. 15 into:

W 2Adf = −W 2βt (16)

where:

A =

 Iu1 Iv1 Iw1

...
Ium Ivm Iwm



βt =

 It1
...

Itm


and m is the number of voxels in the studied cube. Then by
least squares method, the depth flow can be derived:

df = (ATW 2A)−1ATW 2(−βt) (17)

After obtaining the depth flow vector df on each voxel
(x, y, z), the depth flow tensor for the entire facial depth
scene is constructed as a four-order tensor F = (U ,V,W)
∈ RW×H×D×3, in which, the 3D tensor components U ,
V , and W respectively represent the depth flow tensor on
horizontal, vertical and depth direction, i.e., U(x, y, z) = u,
V(x, y, z) = v, W(x, y, z) = w.

Fig. 12 illustrates the comparison of OF and depth flow
features. The sub-figures demonstrate that this new pro-
posed feature considers the advantages of OF and depth
image, and allows the algorithm to capture the motion
features and the geometric deformation information sensi-
tively. In this way, the extracted depth feature could be more
representative for ME compared with the features without
depth information.
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Fig. 12. Comparison between optical flow and depth flow.
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5.2.3 MES with Depth Information
As the depth flow computation method is equivalent to
extending the OF computation in the 2D plane to the depth
scene, we chose the method proposed in [80] as mentioned
above for MES with depth information.

The main idea in [80] is using the FD method. Firstly, the
video is divided into short video clips by a sliding window.
The OF on the face region for each frame is computed based
on the following equalization.

I(x, y, f1) = I(x+∆x, y +∆y, f1 +∆f)

= I(x+∆x, y +∆y, fi)
(18)

where fi denotes the ith frame in the short video clip,
I(x, y, fi) represents the brightness of the pixels in fi. The
OF analysis is performed on the polar coordinate system.
The effect of the overall head movement is removed by
comparing it with the OF of the nose region. After extracting
the spatial features from the regions of interest (ROIs), the
final MES results are obtained by spatio-temporal feature
fusion, multi-scale filtering, and thresholding processes.

For a fair comparison between OF and depth flow, the
method procedure is identical. The difference is that we
extract the depth flow (u, v, w) directly from the ROIs and
the nose region to reduce the redundant computation. The
angle calculation also differs from [80]. The depth flow is a
3D tensor, where the XY plane reflects the information of the
grays image on the 2D plane. Since we would like to explore
the effect of depth on the spotting performance, the angle θ
is defined as being the angle between the vector df and the
XY plane, i.e., the angle between df and its projection on
XY plane (dfXY , (u, y, 0)), the formula is shown below:

∥df∥ = ρ =
√
u2 + v2 + w2

∥dfXY∥ =
√
u2 + v2

df · dfXY = u2 + v2

θ = acos(
df · dfXY

∥df∥ × ∥dfXY∥
)

(19)

Meantime, the magnitude of the depth flow (ρ) is also
calculated in the above equation. After obtaining θ and ρ,
we perform the algorithm with the same process to form
the spatial-depth feature for the entire face region and then
spot ME video clips in long videos.

5.2.4 Experimental result on MES
As introduced in Section 5.2.3, the method in [80] is utilized
for result comparison. Therefore, we have two experimental
settings: this basic method is performed on 2D videos, with
the OF as the feature; the extended method is performed on
videos with depth information, using our proposed depth
flow as the feature.

We utilized the result evaluation method proposed by
MEGC2020 in the MES task [86], in order to standardize the
measurement criteria. As illustrated in Fig. 13, the addition
of depth information allowed the spotting method to obtain
more action information and improve the sensitivity of the
system. Although many false positives (FPs) are detected,
the number of true positives (TPs) for MEs is also increased.
This improvement is also reflected in the Precision and F1
scores.

However, the results of MES are still not up to the re-
quirements of practical applications. On the one hand, ME is
very subtle and brief, and it is complicated for the algorithm
to capture its features. On the other hand, traditional FD
methods cannot discriminate MaEs, MEs, and other facial
actions. In long videos, with the increase of interference,
the algorithm’s performance degrades compared with its
performance in short videos. Depth information as an extra
modal feature can help the system to improve the capacity
of extracting ME features. Besides, in the future, supported
by a large amount of ME sample data, the spotting method
combined with deep learning may enhance the MES per-
formance. The depth information reflects the scene depth
and can better reflect the facial movement on the temporal
domain, which can provide more possibilities for the con-
struction of deep networks.

5.3 Benchmark for MER

Besides comparing depth flow in the facial depth space and
OF on the 2D plane, we also explore the effect of depth
information appending to RGB color information.

Since we only aim to demonstrate the additive effect
of depth information on MER, we directly choose the pre-
trained model: AlexNet [87] in Matlab to simplify network
design workload. AlexNet has relatively shallow layers
and requires fewer training parameters, so it can relatively
alleviate overfitting to a certain extent. Many scholars also
conduct research on network design applicable to the SSS
problem for ME. However, we use AlexNet because it is the
most common shallow layer network and is representative.
We give a preliminary recognition result as a baseline to
facilitate researchers to perform method comparisons.

As the apex frame normally contains the most repre-
sentative ME feature, the apex RGB image and the corre-
sponding depth image are used for feature learning. Before
being imported into the network, the color image and the
depth image are normalized respectively and then form the
network’s input through the channel-wise concatenation.
The network structure is illustrated in Fig. 14.

Regarding the configuration, the experiment is per-
formed by Matlab R2020b, with a single NVIDIA GeForce
GTX 970 GPU. In order to maintain the specific design of
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Fig. 13. Benchmark result for MES on CAS(ME)3.
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the network, the face region input on each channel is nor-
malized to 227×227, i.e., the total input is with a dimension
of 227×227×4. Meanwhile, since we aim to study the effect
of depth information on MER, in the comparison group, the
input to the network consists of only the three channels of
RGB color space (227× 227× 3). The initial learning rate is
set to 0.5× 10−4, and the maximal number of epochs is 500.

Concerning the ME samples, ninety-five of the 100 sub-
jects showed MEs during their recorded videos, for a total
of 943 MEs. The leave one-subject-out cross-validation is
used to validate the result. We performed experiments on
two kinds of ME categories, i.e., ME classification based on
the six basic emotions and the ”Others” category and ME
classification based on the four emotion classes (positive,
negative, surprise, and others), represented by 7Emo and
4Emo in the latter, respectively.

For the result evaluation, we applied the metrics from
the MER task in MEGC2019, i.e., unweighted average recall
(UAR) and unweighted F1-score (UF1) [88], averaging the
per-class recall and F1-score respectively. UAR and UF1
are adequate metrics in the case of unbalanced multiple
classes, because they provide equal weight to the classes
with smaller sample sizes by averaging. Thus, they are
balanced judgments, reducing the likelihood that a method
might be well-adapted to only some classes.

Fig. 15 lists the recognition result with or without depth
information. As can be seen from the results, the addition of
depth information improves the performance of the network
in recognizing MEs. Furthermore, as illustrated in Fig. 16,
we also analyze the recognition performance with depth
information on each class using the confusion matrix. In
conjunction with Fig. 9, it can be seen that the recognition
performance of the categories with a large sample size is
relatively better. In particular, negative MEs account for 54%
of the total sample size. Consequently, the true positive rate
(TPR) is much higher than the other categories. In contrast,
positive MEs account for only 7% of the total, which is
the smallest percentage, and therefore this category has the
lowest TPR. The impact of sample size on recognition accu-
racy is higher than that of the features themselves since ME
movements are very subtle. Therefore, it is difficult for the
deep learning model to classify MEs with positive or happy

Emotion 
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Apex frame 

RGB + Depth

Fig. 14. MER network based on RGB-D information.
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Fig. 15. Benchmark result for MER on CAS(ME)3. RGB and RGB-D de-
note the MER method without and with depth information, respectively.

emotions by the weak-amplitude AU12. In conclusion, the
recognition performance is enhanced as the number of
samples increases. Our database provides a relatively large
number of ME samples, contributing to the improvement
of MER. However, the sample imbalance problem of MEs
seriously affects the performance of recognition for specific
emotions. Therefore, how to improve the recognition per-
formance for some specific kinds of ME samples with a
relatively small amount deserves further exploration.

5.4 Database Comparison
We have performed state-of-arts (SOTA) methods to com-
pare our CAS(ME)3 database with other databases. Table 5
lists the MES performance of different SOTA methods on
different databases. We selected the first-place method (SP-
FD) [80] for the MEGC2020 spotting task and the top two
methods (OF-FD and LSSNet ) [43], [89] for the MEGC2021
spotting task. For the traditional FD methods, such as the
SP-FD and OF-FD, better spotting results can be obtained
for databases with relatively simple situations by suitable
parameter settings and pre-processing. However, the gen-
eralization ability of this kind of method is weak. Since
CAS(ME)3 and CAS(ME)2 have the same frame rate and
similar resolution, we used the same parameter settings for
MES. However, the results were unsatisfactory, and the first-
place method of MEGC2021 (OF-FD) did not even detect TP.
This is because the samples collected by our database are
long videos, which contain many macro-expressions and
head movements. In contrast, for the deep learning-based
MES method, it can be seen that the performance is im-
proved because the sample size of CAS(ME)3 is larger than
that of CAS(ME)2. However, in general, the task of spotting
MEs in long videos is still very challenging. Therefore, much
subsequent research is expected to temporally localize and
distinguish MEs from other facial movements.

In addition, regarding MER, we use three algorithms
trained on SMIC, CASME II, and SAMM databases without
fine-tuning for direct database evaluation while retaining
the original parameters. The evaluation protocol is the same
as Section 5.3, i.e., leave one-subject out cross-validation. Ta-
ble 6 lists the MER performance of different SOTA methods

Positive Negative Surprise Others
Positive 0.032 0.683 0.127 0.159 
Negative 0.032 0.667 0.213 0.088 
Surprise 0.055 0.592 0.224 0.129 
Others 0.036 0.530 0.193 0.241 

Happiness 0.016 0.254 0.048 0.143 0.000 0.381 0.159 
Disgust 0.036 0.405 0.057 0.014 0.057 0.272 0.158 
Fear 0.000 0.376 0.065 0.032 0.075 0.290 0.161 
Anger 0.059 0.353 0.029 0.044 0.059 0.206 0.250 
Sadness 0.048 0.210 0.097 0.065 0.097 0.355 0.129 
Surprise 0.055 0.279 0.040 0.075 0.035 0.363 0.154 
others 0.072 0.181 0.042 0.066 0.030 0.337 0.271 

(a) (b)

Fig. 16. Confusion matrix of MER based on AlexNet with depth informa-
tion: (a) for 4Emo classification, (b) for 7Emo classification.

TABLE 5
MES performance (F1-score) comparison among different ME

databases.

CAS(ME)3 CAS(ME)2 SAMM Long Videos
SP-FD [80] 0.0103 0.0547 0.1331
OF-FD [89] 0 0.1965 0.2162
LSSNet [43] 0.0653 0.042 0.131
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on different databases. Since our database contains more
complex information about individuals and the distribution
of sample types is different from the previously published
database, the recognition results will be relatively unsat-
isfactory. In subsequent work, the performance of MER
in large-scale complex data scenarios can be improved by
adjusting the parameters or creating deep-learning models
with better generalization.

5.5 Multimodal MER Analysis
We have performed the multimodality analysis combining
physiological and voice data on Part C. EDA, as a sensitive
and standard physiological indicator of emotional and sym-
pathetic [92], is used for the result analysis. Since both the
EDA signal and the speech signal are one-dimensional sig-
nals, we converted both signals into a speech spectrogram in
grayscale form. Thus, we obtained three channels for RGB
information, one channel each for depth information, EDA,
and speech signals. We input the features to the fine-tuned
AlexNet network for the MER task with different combi-
nations of features. We obtained the recognition results by
leave-one-subject-out validation, as shown in Table 7. It can
be seen that the depth information can help the model
to extract the ME movement information well and thus
improve the MER performance. However, the recognition
results of combining EDA or speech signals are not satisfac-
tory. It may be because we did not perform better denoising
and filtering of the 1D signal, and the speech spectrogram
approach may not reflect the features of MEs well. The
database provides a data platform for researchers to further
optimize the processing of physiological and speech signals
and explore the performance impact of these two modalities
on ME analysis.

6 CONCLUSION AND PERSPECTIVE

6.1 Conclusion
MEs are very important nonverbal cues in emotion un-
derstanding. However, difficulties in elicitation, acquisition
and annotation have caused the problems of SSS and the
low ecological validity of MEs. In this paper, to address

TABLE 6
MER performance comparison among different ME databases.

STSTNet [90] RCN-A [47] FR [91]

CAS(ME)3 UF1 0.3795 0.3928 0.3493
UAR 0.3792 0.3893 0.3413

SMIC UF1 0.6801 0.6441 0.7011
UAR 0.7013 0.6326 0.7083

CASME II UF1 0.8382 0.8123 0.8915
UAR 0.8686 0.8512 0.8873

SAMM UF1 0.6588 0.6715 0.7372
UAR 0.6810 0.7601 0.7155

TABLE 7
Multimodal analysis on MER for Part C. C, D, V and E denote RGB,

Depth, Voice, and EDA, respectively.

C CD CV CE CDV CDE CDVE
UAR 0.263 0.296 0.216 0.260 0.254 0.244 0.223
UF1 0.248 0.296 0.195 0.230 0.241 0.230 0.191

these two issues, we release a third-generation ME database
by extending video samples to multi-modal data incor-
porating depth information and by combining the third
generation of ME eliciting paradigm to obtain ME samples
with high ecological validity. The amount of data in our
database is comparable to the total amount of spontaneous
ME database published, effectively avoiding the impact
of database bias on MEA method validation. In addition,
our paper contributes to MEA as follows. First, through
an interdisciplinary exploration based on psychology, we
verify the enhancement of depth information on human
visual perception. Furthermore, the proposed depth flow
allows the algorithm be more sensitive to the continuous
changes of ME within the facial depth space and enhancing
the MES performance. And we demonstrate the additive
effect of depth information on RGB images by the improve-
ment of the MER. Second, large scale of unlabeled data
and the labeled data provide a platform for building self-
supervised learning methods. And, we have explored multi-
modal self-supervised learning for ME accordingly by incor-
porating implicit learning in psychology. Third, mock crime
is demonstrated to be feasible in eliciting high ecological
validity MEs. Meanwhile, high ecological validity samples
with physiological and voice signals provide a foundation
for robust real-world MEA and emotion understanding.

6.2 Perspective

Compared with expression analysis, MEA is a more com-
plex task for both humans and computers. Dealing with
complex tasks, the human could intuitively obtain abstract,
unspeakable, and representational knowledge of internal
structure by implicit learning [93]. The process of acquir-
ing knowledge through implicit learning is similar to the
process of self-supervised learning to auto-generate labels.
There are three important features of implicit learning,
namely unconscious process, more domains generalized
and information presentation. They can be corresponded
to these three features of self-supervised learning: unsuper-
vised condition, stable parameter for downstream task, and
multi-modality, respectively. Implicit learning is a very well-
established study. By drawing on some of its theories, it may
be possible to enhance further the performance and even the
interpretability of self-supervised learning.

In the future, we will conduct self-supervised learning
based MEA using unlabeled data in combination with depth
information and lay special emphasis on the MES in long
videos. In addition, research on MEA combining physiolog-
ical and voice signals will also be explored. By combining
traditional signal processing techniques and deep learning
models, the performance of multi-modal MEA will be fur-
ther improved. Finally, ME samples based on mock crime
will be further analyzed to advance the ME application in
complex real-world scenarios.
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