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Abstract—As a general framework, Laplacian embedding,
based on a pairwise similarity matrix, infers low dimensional
representations from high dimensional data. However, it generally
suffers from three issues: 1) algorithmic performance is sensitive
to the size of neighbors, 2) the algorithm encounters the well-
known small sample size (SSS) problem, and 3) the algorithm
de-emphasizes small distance pairs. To address these issues, here
we propose Exponential Embedding using matrix exponential and
provide a general framework for dimensionality reduction. In the
framework, the matrix exponential can be roughly interpreted
by the random walk over the feature similarity matrix, and
thus is more robust. The positive definite property of matrix
exponential deals with the SSS problem. The behavior of the
decay function of Exponential Embedding is more significant
in emphasizing small distance pairs. Under this framework, we
apply matrix exponential to extend many popular Laplacian
embedding algorithms, e.g., Locality Preserving Projections,
Unsupervised Discriminant Projections and Marginal Fisher
Analysis. Experiments conducted on the synthesized data, UCI,
and the Georgia Tech face databases show that the proposed new
framework can well address the issues mentioned above.

Index Terms—Face recognition, Manifold Learning, Matrix
exponential, Laplacian embedding, Dimensionality reduction.

I. INTRODUCTION

Real data, such as face images or fMRI scans are usually
depicted in high dimensions. In order to handle high dimen-
sional data, their dimensionality needs to be reduced. Dimen-
sionality reduction is the transformation of high-dimensional
data into a lower dimensional data space. Currently, the
most extensively used dimensionality reduction methods are
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subspace transformation. Subspace transformation method-
s are appealing for two main reasons [1]. First, subspace
transformation methods typically have a small number of
parameters, and therefore can be estimated using relatively
fewer samples. Subspace transformation methods are espe-
cially useful to model high-dimensional data, since learning
models typically requires a large number of samples as a
result of the curse-of-dimensionality. Second, many subspace
transformation methods can be formulated as eigen-problems,
offering great potential for efficient learning of linear and
nonlinear models without local minima.

Principal Component Analysis (PCA) [2] is an extensively
used linear subspace transformation method maximizing the
variance of the transformed features in the projected subspace.
Linear Discriminant Analysis (LDA) [3] encodes discriminant
information by maximizing the between-class covariance, and
meanwhile minimizing the within-class covariance in the pro-
jected subspace. Another important subspace method is the
Bayesian algorithm using probabilistic subspace [4]. Wang et
al. [5] modeled face difference with three components and
used them to unify PCA, LDA and Bayesian into a general
framework.

Among the three algorithms, LDA suffers from the Small
Sample Size (SSS) problem. This stems from generalized
eigen-problems with singular matrices. To tackle the SSS
problem, many variants of LDA have been proposed in the
recent years, such as Fisherface [3], null LDA [6], LDA/QR
[7], LDA/GSVD [8], LDA/FKT [9], DLA [10][11], Direct
LDA and its variants [12][13][6][14]. An et al. [15] unified
these LDA variants in one framework: principal component
analysis plus constrained ridge regression.

However, both PCA and LDA fail to discover the underlying
manifold structure, in which the high dimensional image
information in the real world lies. In order to uncover the
essential manifold structure of the facial images, laplacian-
faces [16] were obtained by using Locality Preserving Pro-
jections (LPP) [17] to preserve the locality of image samples.
LPP is well-known as a Laplacian embedding algorithm. When
transforming the samples into the projected subspace, it tries
to preserve the local structure of the samples, i.e., the neighbor
relationship between the samples [18][19] so that samples that
were originally in close proximity in the original space remain
so in the projected subspace. Torre [1] unified PCA, LDA,
Canonical Correlation Analysis (CCA) [20], LPP, Spectral
Clustering (SC) [21], and their kernel as well as regularized
extensions into least-squares weighted kernel reduced rank
regression. LPP and its variations only characterize the locality
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of samples, so they do not guarantee a good projection for
classification purposes. To address this, Unsupervised Discrim-
inant Projections (UDP) [22] introduces the concept of nonlo-
cality and characterizes the nonlocality of samples by using the
nonlocal scatter. A concise criterion for feature extraction can
be obtained by maximizing the ratio of nonlocal scatter to local
scatter. Most of the above existing algorithms were unified
into a general graph embedding framework proposed by Yan
et al. [23]. And a new supervised dimensionality reduction
algorithm Marginal Fisher Analysis (MFA) was proposed by
them under this framework as well.

In the graph embedding framework, the neighbor relation-
ship is measured by the artificially constructed adjacent graph.
The k nearest neighbors and ϵ−lneighborhood criteria are
the two most popular adjacent graph construction manners.
ϵ−lneighborhood is geometrically intuitive but infeasible be-
cause it is hard to choose a proper neighborhood radius ϵ in
practice. So k nearest neighbors is always used instead in real
applications.

Once an adjacent graph is constructed, the edge weights
are assigned by various strategies such as 0-1 weights and
heat kernel function. Unfortunately, since the adjacent graph
is artificially constructed beforehand, it does not necessarily
disclose the intrinsic locality of the samples. The algorithmic
performance is often sensitive to the parameter k and the
performance may vary each time k changes [24][25]. Worse
yet, even if k and the sample number are fixed, the per-
formance would still fluctuate with each new set of random
samples. To overcome the problem, several researchers began
to investigate on how to construct the adjacent graph. Yang
et al. [26] constructed Sample-dependent Graph based on
samples in question to determine neighbors of each sample
and similarities between sample pairs, instead of predefining
the same neighbor parameter k for all samples. Zhao et al. [27]
used label information to construct Locally Discriminating
Projection (LDP). Qiao et al. [28] aimed to preserve the sparse
reconstructive relationship of the samples, which was achieved
by constructing the adjacent graph using a minimizing ℓ1
regularization-related objective function.

Another common problem of these Laplacian Embedding
algorithms (such as LPP, UDP and MFA) is that they suffer
from the Small Sample Size (SSS) problem. The problem
occurs when the feature dimensionality is greater than the
number of samples, resulting in the singularity issue. To
address the problem, laplacianfaces [16] uses PCA to reduce
the dimension, and then applies LPP. However, a potential
problem is that the PCA criterion may not be compatible
with the LPP criterion, thus the PCA step may discard the
valuable information for LPP. In order to address the issue,
some strategies [6][12] to deal with the singular problem of
LDA are used on LPP [29][30][31], but they are ineffective on
LPP because the influence of the null space of Sw on LDA
differs from that of the null space of SD on LPP. Finally,
Laplacian Embedding algorithms de-emphasize small distance
pairs, leading to many violations of local topology preserving
at small distance pairs [32].

To address the above issues, we propose a general expo-
nential framework for dimensionality reduction, motivated by

the work in [33]. In [33], Zhang et al. proposed exponential
discriminant analysis (EDA), using matrix exponential to deal
with the SSS problem of LDA. In the proposed framework,
the matrix exponential can be considered as the cumulative
sum of the similarity/transition matrices after the random walk
over the feature similarity matrix. The random walk makes
the feature similarity matrix more reliable and suppresses the
sensitivity to the size of neighbors. The fact that the matrix
exponential is non-singular well deals with the SSS problem.
The framework uses Exponential Embedding and the relation∏

to replace Laplacian Embedding and the relation
∑

, respec-
tively. This remedies the defect that Laplacian Embedding de-
emphasizes small distance pairs. Under this new framework,
we use matrix exponential to extend LPP, UDP and MFA
algorithms.

The rest of this paper is organized as follows: in Section II,
we briefly review Laplacian Embedding algorithms and show
that they suffer from the SSS problem; in Section III, we
give the background of matrix exponential, introduce the
Exponential Embedding, and provide a general framework
for dimensionality reduction; in Section IV, experiments are
conducted on the synthesized data, UCI, and the well-known
face databases to validate that the proposed new framework
can well address the three issues mentioned above; finally in
Section V, conclusions are drawn.

II. LAPLACIAN EMBEDDING: A REVIEW

Given a matrix of N samples X = [x1,x2, . . . ,xN ],xi ∈
RD, Laplacian Embedding searchs for a transformation matrix
W ∈ RD×d to obtain: yi = WTxi,yi ∈ Rd, such that yi

in the projected subspace represents the desirable properties
of xi. In order to characterize the locality of samples, an
adjacency graph G with N nodes is constructed often by k
nearest neighbors. If node i is among the k nearest neighbors
of node j or node j is among the k nearest neighbors of node
i, an edge is put to connect nodes i and j. According to the
adjacency graph G, a similarity matrix H ∈ RN×N is defined
by the following two ways:

1) 0-1 function

Hij =

{
1 nodes i and j are connected in G

0 otherwise.
(1)

2) Heat kernel function

Hij =

{
e
−

∥xi−xj∥
2

2t2 nodes i and j are connected in G

0 otherwise.
(2)

Here t is a parameter that can be determined empirically.
When t is large enough, exp(−∥xi−xj∥2/t) = 1, heat kernel
becomes 0-1 ways. Obviously, 0-1 ways is a special case of the
heat kernel. The similarity matrix H is the basic foundation
of characterizing the locality of samples in many manifold
learning algorithms.

A. Three Popular Laplacian Embedding Algorithms
Here, we will give a brief introduction of Locality Preserv-

ing Projections, Unsupervised Discriminant Projections and
Marginal Fisher Analysis.
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1) Locality Preserving Projections: LPP [17] is a classical
Laplacian embedding approach. The similarity matrix H,
without using class label information, is used to characterize
the locality of samples in unsupervised LPP. The objective
function is designed to enforce that if xi and xj are close,
then yi and yj are close as well. The desired transformation
matrix W is obtained by minimizing the following objective:

1

2

∑
i,j

∥yi − yj∥2Hij =
1

2

∑
i,j

∥WTxi −WTxj∥2Hij

= tr
(
WTX(D−H)XTW

)
= tr

(
WTXLXTw

)
,

(3)

where L = D −H is the Laplacian matrix. D is a diagonal
matrix and its entry Dii =

∑
j Hij measures the local density

around xi. The bigger the value Dii is, the more important yi

will be. Therefore, we impose a constraint as follows:

YTDY = I ⇒ WTXDXTW = I. (4)

For convenience, we denote

SL = XLXT and SD = XDXT . (5)

So, the criterion function of LPP is as follows:

min
W

tr
((

WTSDW
)−1 (

WTSLW
))

. (6)

Finally, the transformation matrix W consists of the eigen-
vectors associated with the smallest eigenvalues of the follow-
ing generalized eigenvalue decomposition problem:

SLwi = λiSDwi. (7)

2) Unsupervised Discriminant Projections: LPP only char-
acterizes the locality of samples. Based on LPP, UDP [22]
also characterizes the nonlocality of samples by using the
nonlocal scatter. A concise criterion for feature extraction can
be obtained by maximizing the ratio of nonlocal scatter to
local scatter. The local scatter matrix is defined by

SL =
1

2

∑
i,j

(xi − xj)(xi − xj)
THij . (8)

Similarly, the nonlocal scatter matrix can be defined by

SN =
1

2

∑
i,j

(xi − xj)(xi − xj)
T (1−Hij). (9)

UDP then optimizes:

max
W

tr
((

WTSLW
)−1 (

WTSNW
))

. (10)

3) Marginal Fisher Analysis: Differing from LPP and UDP,
MFA uses the class label information to construct two graphs
based on k nearest neighbors: an intrinsic graph that charac-
terizes the intraclass compactness and a penalty graph which
characterizes the interclass separability. The intrinsic graph
illustrates the intraclass point adjacency relationship, where
each sample is connected to its k1-nearest neighbors of the
same class. The corresponding similarity matrix is denoted as
Hc.

Hc
ij =

{
1 if i ∈ N+

k1
(j) or j ∈ N+

k1
(i);

0 otherwise;
(11)

where N+
k1
(i) indicates the index set of the k1 nearest neigh-

bors of the sample xi in the same class.
The penalty graph illustrates the interclass marginal point

adjacency relationship and the marginal point pairs of different
classes are connected. The corresponding similarity matrix is
denoted as Hp.

Hp
ij =

{
1 if (i, j) ∈ Pk2(ci) or (i, j) ∈ Pk2(cj);

0 otherwise;
(12)

where Pk2(c) is a set of data pairs that represent the k2 nearest
pairs among the set {(i, j), i ∈ πc, j /∈ πc}. πc denotes a set
of the elements belonging to cth class. Intraclass compactness
is characterized as follows:

Sc =
1

2

∑
ij

(xi − xj)(xi − xj)
THc

ij , (13)

where Lc = Dc−Hc is the Laplacian matrix from the intrinsic
graph. Similarly, the interclass separability is characterized by

Sp =
1

2

∑
ij

(xi − xj)(xi − xj)
THp

ij , (14)

where Lp = Dp−Hp is the Laplacian matrix from the penalty
graph.

MFA tries to find a transformation matrix which will
make intraclass more compact while simultaneously making
interclass more separable. The criterion function of MFA is as
follows:

min
W

tr
((

WTSpW
)−1 (

WTScW
))

. (15)

B. Small Sample Size Problem

Generally, the number of training samples is always less
than their dimensionality. This results in the consequence that
LPP, UDP and MFA suffer from the SSS problem. We first
investigate the SSS problem for UDP. Due to the symmetry
of H, Eq. (8) can be rewritten:

SL =
1

2

N∑
i=1

N∑
j=1

(Hijxix
T
i +Hijxjx

T
j − 2Hijxix

T
j )

=
N∑
i=1

Diixix
T
i −

N∑
i=1

N∑
j=1

Hijxix
T
j

= XDXT −XHXT

= XLXT

(16)

Theorem 1. Let D and N be the dimensionality of the sample
and the number of the samples, respectively. If D > N , then
the rank of SL is at most N − 1.

Proof: According to the definition of the Laplacian matrix
and the fact that the similarity matrix is symmetrical,

|L| =

∣∣∣∣∣∣∣∣∣

∑
j H1j −H11 −H12 · · · −H1N

−H12

∑
j H2j −H22 · · · −H2N

...
...

. . .
...

−H1N −H2N · · ·
∑

j HNj −HNN

∣∣∣∣∣∣∣∣∣
(17)
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we add the 2nd, 3rd,... Nth rows into the 1st row, and then
obtain |L| = 0. So, the rank of L is at most N−1. It is known
that the maximum possible rank of the product of two matrices
is smaller than or equal to the smaller of the ranks of the two
matrices. Hence, rank(SL) = rank(XLXT ) ≤ N − 1.

From Theorem 1, when SSS problem occurs, SL is singular.
Eq. (10) cannot be solved. So, UDP suffers from SSS problem.
Using similar proof of Theorem 1, we can obtain rank(SD) ≤
N with SSS problem. LPP also suffers from SSS problem. So
does MFA.

III. A GENERAL EXPONENTIAL FRAMEWORK FOR
DIMENSIONALITY REDUCTION

A. Matrix Exponential

Mathematically, matrix exponential is a matrix function
on square matrices analogous to the ordinary exponential
function. Due to the fact that it has many desirable properties,
the matrix exponential is widely used in applications such
as nuclear magnetic resonance spectroscopy [34][35], control
theory [36], and Markov chain analysis [37].

Definition 1. Given an n×n square matrix X, its exponential
is denoted as eX or exp(X), and it is defined as follows:

eX = I+X+
X2

2!
+ · · ·+ Xm

m!
+ · · · (18)

where I is an identity matrix with the size of n× n.

The properties of matrix exponential are listed as follows:
1) e0 = I.
2) eaXebX = e(a+b)X.
3) eXe−X = I.
4) If XY = YX, then eX+Y = eXeY = eYeX.
5) If X is a diagonal matrix, i.e. X = diag(x1, x2, . . . , xn),

then its exponential can be obtained by just expo-
nentiating every entry on the main diagonal: eX =
diag(ex1 , ex2 , . . . , exn)

6) If Y is an invertible matrix, then eY
−1XY = Y−1eXY.

7) |eX| = etr(X).
8) e(X

T ) = (eX)T . It holds that if X is symmetric then eX

is also symmetric, and that if X is skew-symmetric then
eX is orthogonal.

A wide variety of methods for computing exp(A) were
analyzed in the classic paper of Moler and Van Loan [38],
which was reprinted with an update in [39]. The scaling and
squaring method is one of the best methods for computing the
matrix exponential. For details, please refer to [39].

B. Exponential Embedding and General Framework

Observing LPP, UDP and MFA, we can derive their core
functions as the following Laplacian embedding:

argmin
w

tr

∑
ij

(yi − yj)(yi − yj)
THij

 , (19)

where Hij represents Hij in LPP and UDP, but Hp
ij and Hc

ij

in MFA.

0 

Γ
Exponential

(d
ij
) 

Γ
Laplacian

(d
ij
) 

d
ij
 

(a)

ΣΠ

0 d
ij

(b)

Fig. 1. The different behaviors of the decay functions and their relations.
(a) The behaviors of the decay functions for Laplacian embedding and
Exponential embedding. Abscissa denotes dij and ordinate denotes the values
of the decay functions. For ease of comparison, the curve of the decay
function of Exponential Embedding has been phase shifted to start from the
origin. (b) The behaviors of the relations for

∑
and

∏
. The red line denotes

the function
∏

ij ΓLaplacian(dij) and the green line denotes the function∑
ij ΓLaplacian(dij).

Without loss of generality, we assume that the dimension-
ality of projected subspace d = 1. If we define the distance
between yi and yj as dij = |yi − yj | and the decay function
as Γ(dij), the general embedding objective can be written as
follows:

argmin
w

RijΓ(dij)Hij . (20)

The objective consists of two parts: 1) the decay function
Γ(dij), and 2) the relation R, such as summation

∑
or product∏

. For example, when the decay function is ΓLaplace(dij) =
d2ij and the relation R is summation

∑
, Eq. (20) is then the

Laplacian embedding in Eq. (19):

argmin
w

∑
ij

ΓLaplacian(dij)Hij . (21)

Figure 1(a) depicts the behavior of the decay function
of Laplacian embedding. Laplacian embedding uses small
distance pairs (namely, dij is small) to preserve the locality of
samples. In other words, Laplacian embedding only takes into
account the small distance pairs, because when dij is large,
the corresponding Hij is zero, and then ΓLaplacian(dij)Hij

has no contribution to Eq. (21). However, when dij is small,
the behavior of ΓLaplacian(dij) is less steep. So Laplacian
Embedding cannot characterize the locality of samples well.
To address the problem, we define the decay function of
Exponential embedding as ΓExponential(dij) = ed

2
ij/σ

2

. As
shown in Figure 1(a), when dij is small, the behavior of
ΓExponential(dij) is steeper, so it can characterize the locality
of samples better than ΓLaplacian(dij). Thus, we replace the
ΓLaplacian(dij) in Eq. (21) with ΓExponential(dij),

argmin
w

∑
ij

e
(yi−yj)

2

σ Hij . (22)

In this work, we simply set σ = 1. Because the value of
Hij is either 1 or 0 in our implementations, the solution of
the following problem is equal to the solution of Eq. (22) plus
a constant:

argmin
w

∑
ij

e(yi−yj)
2Hij . (23)
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Due to (yi − yj)
2Hij ≥ 0, we obtain e(yi−yj)

2Hij ≥ 1. This
means that each term in Eq. (23) is equal to or greater than
one. Figure 1(b) illustrates the behaviors of two relations

∑
and

∏
. As shown in Figure 1(b), when the value of the decay

function is greater than or equal to 1, the behavior of product∏
is more significant than summation

∑
. To further enhance

the significance, we change the relation R in Eq.(23) from
summation

∑
to product

∏
:

argmin
w

∏
ij

e(yi−yj)
2Hij = argmin

w
e

∑
ij

(yi−yj)
2Hij

. (24)

When d > 1, Eq. (24) can be replaced as:

argmin
W

∣∣∣∣∣∣
∏
ij

e(yi−yj)(yi−yj)
THij

∣∣∣∣∣∣
= argmin

W

∣∣∣∣e∑ij (yi−yj)(yi−yj)
THij

∣∣∣∣
= argmin

W

∣∣∣eWTXLXTW
∣∣∣ = argmin

W
etr(W

TSLW)

(25)

where | · | denotes the matrix determinant. Obviously, W = 0
is the solution of Eq. (25). However, W = 0 does not
make sense for dimensionality reduction. So, the constraint
WTW = I is needed. From the monotonicity of the ex-
ponential function, Eq. (25) acquires the minimum, if and
only if tr

(
WTSLW

)
obtains the minimum. The minimum

of tr
(
WTSLW

)
can be obtained by solving the following

eigenvalue problem:

SLw = λw. (26)

Theorem 2. If µ1, µ2, . . . , µn are eigenvectors of X that cor-
respond to the eigenvalues λ1, λ2, . . . , λn, then µ1, µ2, . . . , µn

are also eigenvectors of eX that correspond to the eigenvalues
eλ1 , eλ2 , . . . , eλn .

Proof: µi is the eigenvector of X that corresponds to the
eigenvalue λi, i.e. Xµi = λiµi, because

Iµi = µi

Xµi = λiµi

1

2!
X2µi =

1

2!
λiXµi =

1

2!
λ2
iµi

1

3!
X3µi =

1

3!
λiX

2µi =
1

3!
λ3
iµi

. . .

1

m!
Xmµi =

1

m!
λiX

m−1µi =
1

m!
λm
i µi

. . .

(27)

Summing the above equations, we have

(I+X+
1

2!
X2 + . . .+

1

m!
Xm + . . .)µi

= (1 + λi +
λ2
i

2!
+ . . .+

λm
i

m!
+ . . .)µi.

(28)

According to the definition of matrix exponential and the
definition of power series of scaler λi: eλi = 1 + λi +

λ2
i

2! +

. . .+
λm
i

m! + . . ., Eq. (28) is rewritten:

eXµi = eλiµi. (29)

This means that µi is the eigenvector of eX that corresponds
to the eigenvalue eλi .

According to Theorem 2, SL has the same eigenvectors as
eSL . So, Eq. (25) can be obtained by solving the following
eigenvalue problem:

eSLw = λw. (30)

Similarly, the constraint WT eSDW = I is imposed. The
criterion function of Exponential LPP (ELPP) can be written
as follows:

argmin
W

∣∣∣(WT eSDW
)−1 (

WT eSLW
)∣∣∣ . (31)

It can be solved by the following generalized eigenvalue
decomposition method:

eSLwi = λie
SDwi. (32)

Due to the fact that eSL and eSD are positive definite, Eq. (32)
has D positive eigenvalues. The solution of ELPP consists of
the eigenvectors corresponding to the d (1 ≤ d ≤ D) smallest
eigenvalues.

Observing LPP, UDP and MFA, the criterion functions of
many dimensionality reduction algorithms can be summarized
as follows,

argmax
W

ormin
W

tr
((

WTS2W
)−1 (

WTS1W
))

(33)

where S1 and S2 differ according to different algorithms. For
example, when S1 = SL and S2 = SD, a minimization of Eq.
(33) will represent the criterion function of LPP.

Following Theorem 2, X and eX share the same eigenvec-
tors. We can use eS1 and eS2 to replace S1 and S2 in Eq. (33)
and propose a General Exponential Framework that solves the
SSS problem as follows:

argmax
W

ormin
W

∣∣∣(WT eS2W
)−1 (

WT eS1W
)∣∣∣ . (34)

For specific algorithms, we can obtain the criterion functions
of Exponential LPP (ELPP), Exponential UDP (EUDP) and
Exponential MFA (EMFA) as follows:

1) ELPP: argmin
W

∣∣∣(WT eSDW
)−1 (

WT eSLW
)∣∣∣;

2) EUDP: argmin
W

∣∣∣(WT eSNW
)−1 (

WT eSLW
)∣∣∣;

3) EMFA: argmin
W

∣∣∣(WT eSpW
)−1 (

WT eScW
)∣∣∣.

Similarly, when S1 = Sb and S2 = Sw, a maximization of
Eq.(34) will represent the criterion function of EDA. So EDA
can also be unified into the framework.

C. Justifications

From another point of view, we may treat each feature
fp (p = 1, 2, . . . , D) as a vertex in the vertex set F =
{f1, f2, . . . , fD} of a graph. S (S denotes S1 or S2) can
be considered as the special feature similarity matrix, which
represents the certain relationship among the D features.
Especially when each feature dimension is ℓ2-normalized, the
similarity matrix is the special affine cosine similarity matrix,
and we may virtually and roughly consider this matrix as a



6 IEEE TRANSACTIONS ON IMAGE PROCESSING

2%4%
5%

7%

9%

11%

13%
15%

16%

18%

 

 

λ
1

λ
2

λ
3

λ
4

λ
5

λ
6

λ
7

λ
8

λ
9

λ
10

(a) Proportion of each λi to
∑

λi

0.4259% 0.1567%
0.0576%

0.0212%
0.0078%

1%3%

9%

23%

63%

 

 

eλ
1

eλ
2

eλ
3

eλ
4

eλ
5

eλ
6

eλ
7

eλ
8

eλ
9

eλ
10

(b) Proportion of each eλi to∑
eλi
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transition matrix over the graph Grw = {F,S}1. Due to the
limited number of training samples and the sensitivity to k,
the similarity/transition matrix S is often not reliable. To get
a more reliable similarity/transition matrix, we may argue the
matrix in two aspects. First we may implement the random
walk on the graph Grw. The Sm can be considered as a new
similarity/transition matrix after (m−1)-step random walk on
the graph to consider the global correlations among features,
and the resultant Sm is a smoothed similarity matrix. We set
different weights 1

m! for the similarity matrices Sm; the more
smoothed the similarity matrix is, the fewer weights there will
be. Then, we may use the prior that features are prone to
independent, and then the corresponding similarity matrix is
an identity matrix of I. To balance the prior matrix of I and
the similarity matrix S, we may add a weight λ to S. Then by
combining all these matrices with different weights, we obtain
∞∑

m=0

(λS)m

m! , which is right to be eλS. By properly setting the

scale of S, we may set λ=1, and then we have eS. Obviously,
eS encodes richer information for characterizing the similarity
of features than S.

LPP, UDP, MFA and other methods where the k-nearest
neighbor method is applied are sensitive to changes of pa-
rameter k. When k is different, the set {λ1, λ2, . . . , λD}
generated by Eq. (7) is different. This is also the reason why
the performance of LPP is sensitive to the size of neighbors
k. Through matrix exponential, λi is changed to eλi . Due to
the nature of exponentials, the bigger the eigenvalue is, the
larger its proportion will be, and the smaller the eigenvalue
is, the smaller its proportion will be. Figure 2 illustrates the
proportion of each λi and eλi to the sum of all eigenvalues.
The largest eigenvalue λ10 accounts for 18% of the total
proportion in Figure 2(a), while its corresponding exponential
eλ10 accounts for 63% of the total in Figure 2(b). The smallest
eigenvalue λ1 accounts for 2% in Figure 2(a), while its corre-
sponding exponential eλ1 accounts for 0.0078% in Figure 2(b).
As shown in Figure 2, through matrix exponential, noises
(over small eigenvalues) caused by fluctuation in parameter
k have been reduced, namely because eigenvectors for small
eigenvalues are reduced. In other words, eigenvectors for large
eigenvalues are magnified.

Generally, for real high dimensional data, such as face
images, the number of dimensions is greater than the number

1Here, Sij can be negative, and thus the explanation is just intuitive but
not fully theoretically sound.

of training samples. This is the well-known small sample size
(SSS) problem. However, there is a possibility of S2 in Eq.
(33) becoming a singular matrix. A common strategy for SSS
problem is to reduce dimensionality via PCA before using
the corresponding criterion functions. However, a potential
problem is that the PCA criterion may not be compatible
with the subsequent criterion functions, and the PCA step
may discard valuable information for these algorithms in the
null space of S2. To address this problem, let us look back
at Theorem 2, where any eigenvalue eλi of eX should be
larger than zero. This ensures that eX is non-singular. In
addition, the eigenvectors of X and eX are the same, and their
corresponding eigenvalues share an exponential relationship
that is strongly monotonic and unaffected by the order of
eigenvalues. The relevant matrices are replaced with their
corresponding exponentials into the criterion functions. This
ensures eS1 and eS2 are also non-singular matrices. Therefore,
when the SSS problem occurs, the Eq. (34) works well.
Moreover, valuable information in the null space S2 is kept.

IV. EXPERIMENTS

A. Experiments on Synthesized Data

Let us first consider two well-known synthetic data sets from
[40]: the s-curve and the Swiss roll. Figure 3 illustrates the
3,000 randomly sampled 3D points on the Swiss roll manifold
and their respective 2D projections obtained by LPP, ELPP,
UDP and EUDP. The size of nearest neighbors k is set as 12.
It can be observed that the performance of LPP parallels that
of UDP, and the performance of ELPP is better than that of
LPP. Among the four methods, EUDP obtains the best perfor-
mance, because it preserves global geometric characteristics
and faithfully projects and conveys the information about how
the manifold is folded in the high dimensional space.

Figure 4 illustrates the sensitivity of ELPP and EUDP with
respect to random realizations of the data set for different
k, respectively. We tested with several values of k (k =
5, 10, 15, 20, 25) and the results are illustrated in Figure 4.
Notice that when the parameter k changes, the 2D projections
obtained by ELPP only rotate, but the distribution of projec-
tions remains the same. This means that the performance of
ELPP is less sensitive to k. For EUDP, its performance is
more sensitive to k in comparison to ELPP. However, it can
still reveal the intrinsic manifold structure of the Swiss roll
in many cases (k = 10, 15, 25). In other cases (k = 5, 20), it
unfolds and separates the samples well.

With the same experimental setting, Fig. 5 illustrates the
3,000 randomly sampled 3D points on the s-curve manifolds
and the 2D projections obtained by the four methods in the
s-curve data set. From the figure, it can also be seen that the
distribution of LPP is similar to that of UDP and the projection
of EUDP is the most separable in the four projections. In
summary, EUDP has the best performance on the synthesized
data.

B. Experiments on the UCI Machine Learning Repository

We evaluate the recognition accuracy of ELPP, EUDP and
EMFA on the Landsat Satellite data set from the UCI Machine
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Fig. 3. Results of four related methods applied to the Swiss roll example.
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Fig. 4. Behavior of ELPP and EUDP under different values of k on the Swiss roll data set.
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Fig. 5. Results of four related methods applied to the s-curve example.

Learning Repository 2. The data set consists of 6,435 measure-
ments with 36 attributes from six classes. We compare ELPP,
EUDP and EMFA against their non-exponential versions. We
randomly choose p (p = 100, 200, 300, 400, 500) samples
from each class as the training set and the rest are used
as the testing set. This process is repeated 20 times. We
search for k from {25, 50, 75, . . . , ⌊N−1

25 ⌋ × 25} for ELPP,
EUDP and their corresponding non-exponential versions. As
for MFA and EMFA, we set k1 for the intrinsic graph,
searching from {25, 50, 75, . . . , ⌊ p

25⌋ × 25} and k2 for the
penalty graph searching from {25, 50, 75, . . . , ⌊N−p

25 ⌋ × 25}.
We then choose the maximal recognition accuracy as the result
for each process. Note that for final classification, we used the
Nearest Neighbor method. Finally, we calculate the mean value
of the 20 maximal values. The results are listed in Table I,
which shows that the average recognition accuracies of ELPP,
EUDP and EMFA are better than those of their corresponding

2http://archive.ics.uci.edu/ml/

non-exponential versions in most cases. For EMFA, we also
compare it with two discriminant dimensionality reduction al-
gorithms: LDA and EDA. Out of four discriminant algorithms,
EMFA obtains the best performance and EDA obtains the
second best performance. This also shows that the general
exponential framework is effective.

TABLE I
AVERAGE RECOGNITION ACCURACY ON LANDSAT SATELLITE

p 100 200 300 400 500

ELPP 0.8508 0.8668 0.8744 0.8788 0.8854
LPP 0.8100 0.8372 0.8531 0.8608 0.8701

EUDP 0.8469 0.8626 0.8706 0.8760 0.8831
UDP 0.8230 0.8564 0.8702 0.8784 0.8855

EMFA 0.8595 0.8745 0.8836 0.8880 0.8941
MFA 0.8157 0.8413 0.8568 0.8677 0.8781
EDA 0.8511 0.8643 0.8724 0.8758 0.8809
LDA 0.8021 0.8236 0.8338 0.8369 0.8439
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Fig. 6. Sample images of one individual from the Georgia Tech database.

C. Experiments on the Georgia Tech face database

Georgia Tech face database3 contains images of 50 in-
dividuals taken in two or three sessions at different times.
Each individual in the database is represented by 15 color
images with cluttered background taken at a resolution of
640 × 480 pixels. The pictures show frontal and/or tilted
faces with different facial expressions, lighting conditions and
scales. Each image is manually cropped and resized to 32×32
pixels. The sample images for one individual of the Georgia
Tech database are shown in Fig. 6. In order to avoid the matrix
exponential approaching infinite, all images are normalized to
[0, 1].

In this experiment, the similarity matrix H is defined by
the 0-1 function. The neighbors parameter k is searched from
{2, 3, . . . , N − 1}. We randomly split the image samples so
that p (p = 2, 4, 6, 8, 10, 12) images for each individual are
used as the training set and the rest are used as the testing
set. This process is repeated 20 times. Fig. 7 shows that the
performances of LPP and ELPP vs. the neighborhood size
k. Abscissa denotes the repeated time and ordinate denotes
the neighborhood size k. The color of the patch denotes the
recognition accuracy. The warmer the color is, the higher
the recognition accuracy is. The difference between the patch
colors may show the algorithmic sensitivity to k. The greater
the difference is, the higher the sensitivity is. Comparing the
corresponding columns of Fig. 7(a) and Fig. 7(b), there is very
little color difference in each column of Fig. 7(a). This means
that the performance of ELPP is much less sensitive to the
parameter k than that of LPP.

Analytically, we define the criterion to measure the sensi-
tivity to the parameter k as follows. The recognition accu-
racies are normalized to [0, 1]. Within the 20 random splits
in our experiments, each split includes N − 1 recognition
accuracy corresponding to N − 1 values of k. For each split,
the maximum difference of recognition accuracy is obtained
by subtracting the minimum accuracy from the maximum
accuracy. The criterion Mean Maximum Difference (MMD)
is the mean value of all maximum differences of recognition
accuracy. To a certain degree, the smaller the value of MMD
is, the more insensitive to k will be. The MMDs of ELPP and
LPP are listed in Table II. From the table, the MMDs of ELPP

3http://www.anefian.com/research/face reco.htm

are less than those of LPP. This also shows that ELPP is less
sensitive to k than LPP.

TABLE II
MMD OF ELPP AND LPP ON GEORGIA TECH DATABASE

p 2 4 6 8 10 12

ELPP 0.1855 0.2065 0.2393 0.3600 0.2687 0.4187
LPP 0.4632 0.6021 0.6806 0.6056 0.6620 0.6056

We compare the cost time of ELPP with LPP using various
image sizes. The images are resized to 8×8, 16×16, 32×32,
64 × 64 and 128 × 128 pixels. All images are used as the
training samples. The cost time is listed in Table III. From
the table, it can be seen that the cost time of ELPP is smaller
than that of LPP when the size of the image is greater than
or equal to 32× 32 pixels. In LPP, the step of PCA becomes
more time consuming as image size increases. Hence, the cost
time of LPP increases dramatically with the increasing image
size.

TABLE III
THE COST TIME OF ELPP AND LPP (SECOND)

size 8× 8 16× 16 32× 32 64× 64 128× 128

ELPP 3.0140 3.1090 3.4988 5.6480 32.3166
LPP 0.0121 0.2083 6.4669 9.7797 35.5853

In order to investigate the performance of ELPP, we com-
pare ELPP with LPP. The results are illustrated in Fig. 8(a).
The solid lines denote that the neighborhood size k is searched
from {2, 3, . . . , N − 1}. The dot-dash lines denote k is set as
2. As shown in Fig. 8(a), the performances of ELPP are better
than those of LPP in two ranges of k. This outcome stems from
the PCA step before implementing LPP, where the information
that might be valuable to LPP is discarded. Nevertheless, the
proposed algorithm does not employ the PCA step, preserving
all possible valuable information that gives ELPP an edge over
LPP. In Fig. 8(a), we also find that the space between two
curves of ELPP is much narrower than that of LPP. This also
proves that the performance of ELPP is much less sensitive to
the parameter k than that of LPP.

Intuitively, we project all 225 samples in Georgia Tech
database to the first two axes by LPP and ELPP. The pro-
jections are illustrated in Fig. 9. From Fig. 9(b), we can see
that 255 samples are projected into 4 points by LPP. This may
cause difficulties for subsequent classifications. As mentioned
in Section II-A1,

1

2

∑
i,j

(yi − yj)
2Hij = wTXLXTw. (35)

Consequently, if the eigenvector corresponding to a zero
eigenvalue is taken as the transforming axis, the transformed
result will statistically satisfy the following condition:

1

2

∑
i,j

(yi − yj)
2Hij = 0. (36)

Note that Hij ≥ 0 and (yi − yj)
2 ≥ 0 are certain for

arbitrary i and j. Hence, Eq. (36) means that for arbitrary
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Fig. 7. The performances of LPP and ELPP vs. the neighborhood size k on the the Georgia Tech database.
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ELPP on the Georgia Tech database.

i and j, (yi − yj)
2Hij = 0 should be satisfied. In particular,

for two neighbor samples Hij > 0 is satisfied. As a result,
(yi − yj)

2Hij = 0 implies that in the transform space the
neighbor samples must have the same representation. This
does not preserve the local structure of data as in LPP, which
requires that the transformed results of neighbor samples be
in close proximity rather than being the same. Therefore, 255
samples are projected into four points only on the first two
axes of LPP. This cannot reveal the intrinsic manifold structure
of samples. However, ELPP replaces XLXT with eXLXT

to
ensure that the arbitrary eigenvalue is larger than zero. This
prevents neighbor samples from being projected into the same
point.

In the same way, we also compare EUDP with UDP. Fig. 10
shows that the performances of UDP and EUDP vs. the
neighborhood size k. Differing from Fig. 7, there is less color
difference in each row of the figure of EUDP. This means
that when the neighborhood size k is fixed, the performance
of the proposed algorithm is less sensitive to changes of the
randomly sampled training images than that of UDP. From
Fig. 10, we can also see that when k is very small or very
large, EUDP obtains better performance. When k is almost

N − 1, k is less sensitive to the performance of EUDP than
that of UDP. And when p is fixed, the performances of EUDP
are almost identical in 20 random processes. The performances
of EUDP and UDP are illustrated in Fig. 8(b). The dot-dash
lines denote that k is equal to N−1. As is shown in Fig. 8(b),
the performances of EUDP with k = N − 1 are better than
those of UDP with k = 1, 2, . . . , N−1. Moreover, we also find
that the space between two curves of EUDP is much narrower
than that of UDP.

We also evaluate the performances of EMFA and MFA
on the Georgia Tech database. The neighbors parameter k1
for the intrinsic graph is searched from {2, 3, . . . , p}. The
neighbors parameter k2 for the penalty graph is searched from
{2, 3, . . . , N − p}. Fig. 11 shows that the performances of
EMFA and MFA vs. the neighborhood size k2 (k1 is fixed).
From the figures, we can see that when the neighbors param-
eter k2 for the penalty graph is large enough, the performance
of EMFA is insensitive to the neighbors parameters. We also
compare EMFA with MFA, LDA and EDA. The results are
illustrated in Fig. 8(c). Although the performances of EDA are
better than those of EMFA in most cases, the performance of
EMFA is better than that of EDA in the case where p=2. This
shows EMFA is more efficient than EDA, when the number
of training samples is rather small.

V. CONCLUSION

We have presented Exponential Embedding and a general
framework for dimensionality reduction. Under the framework,
we used matrix exponential to extend LPP, UDP and MFA
algorithms. These exponential versions can deal with 1) small
sample size (SSS) problem, 2) the algorithmic sensitivity to
the size of neighbors k and 3) de-emphasizing small distance
pairs. The experiments on the synthesized data, UCI and
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(e) EUDP (p=12)
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Fig. 10. The performances of UDP and EUDP vs. the neighborhood size k on the Georgia Tech database.
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(a) EMFA (p=2,k1=2)
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(b) MFA (p=2,k1=2)
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(c) EMFA (p=4,k1=2)
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(d) MFA (p=4,k1=2)
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(e) EMFA (p=12,k1=12)
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Fig. 11. The performances of EMFA and MFA vs. the neighborhood size k2 on the the Georgia Tech database.

the Georgia Tech face databases revealed that the proposed
framework can well address above problems.
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