A novel bankruptcy prediction model based on an adaptive fuzzy k-nearest neighbor method

Hui-Ling Chena,b Bo Yanga,b Gang Wanga,b Jie Liua,b Xin Xua,b Su-Jing Wanga,b Da-You Liua,b

a(College of Computer Science and Technology, Jilin University, Changchun 130012, China)
b(Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China)

Abstract:

Bankruptcy prediction is one of the most important issues in financial decision-making. Constructing effective corporate bankruptcy prediction models in time is essential to make companies or banks prevent from bankruptcy. This study proposes a novel bankruptcy prediction model based on an adaptive fuzzy k-nearest neighbor (FKNN) method, where the neighborhood size k and the fuzzy strength parameter m are adaptively specified by the continuous particle swarm optimization (PSO) approach. In addition to performing the parameter optimization for FKNN, PSO is also utilized to choose the most discriminative subset of features for prediction. Adaptive control parameters including time-varying acceleration coefficients (TVAC) and time-varying inertia weight (TVIW) are employed to efficiently control the local and global search ability of PSO algorithm. Moreover, both the continuous and binary PSO are implemented in parallel on a multi-core platform. The proposed bankruptcy prediction model, named PTVPSO-FKNN, is compared with five other state-of-the-art classifiers on two real-life cases. The obtained results clearly confirm the superiority of the proposed model in terms of classification accuracy, Type I error, Type II error and area under the receiver operating characteristic curve (AUC) criterion. The proposed model also demonstrates its ability to identify the most discriminative financial ratios. Additionally, the proposed model has reduced a large amount of computational time owing to its parallel implementation. Promisingly, PTVPSO-FKNN might serve as a new candidate of powerful early warning systems for bankruptcy prediction with excellent performance.

Keywords: Fuzzy k-nearest neighbor; Parallel computing; Particle swarm optimization; Feature selection; Bankruptcy prediction

1. Introduction

Accurately identifying the potentially financial failure of companies remains a goal of many stakeholders involved. Because there is no underlying economic theory of bankruptcy, searching for more accurate bankruptcy prediction models remains the goal in the field of the bankruptcy prediction. As a matter of fact, bankruptcy prediction can be formulated as the problem of solving classification task. A fair amount of classification models has been developed for bankruptcy prediction. These models have progressed from statistical methods to the artificial intelligence (AI)
approaches. A number of statistical methods such as the simple univariate analysis [1], multivariate discriminant analysis technique [2], logistic regression approach [3] and factor analysis technique [4] have been typically used for financial applications including bankruptcy prediction. Recent studies in the AI approach, such as artificial neural networks (ANN) [5][6][7][8][9][10][11], rough set theory [12][13][14], support vector machines (SVM) [15][16][17], k-nearest neighbor method (KNN) [18][19][20], Bayesian network models [21][22] and other different methods such as hybrid methods and ensemble methods [23][24][25][26] have also been successfully applied to bankruptcy prediction (see [25][26] for detail). Among these techniques, ANN has become one of the most popular techniques for the prediction of corporate bankruptcy due to its high prediction accuracy. However, a major disadvantage of ANN lies in their knowledge representation. The black box nature of ANN makes it difficult for humans to understand how the networks predict the bankruptcy.

Compared with ANN, KNN is simple, easily interpretable and can achieve acceptable accuracy rate. Albeit these advantages, the standard KNN methods place equal weights on all the selected neighbors regardless of their distances from the query point. An improvement over the standard KNN classifier is the Fuzzy k-nearest neighbor classifier (FKNN) [27], which uses concepts from fuzzy logic to assign degree of membership to different classes while considering the distance of its k-nearest neighbors. It means that all the instances are assigned a membership value in each class rather than binary decision of ‘bankruptcy’ or ‘non-bankruptcy’. Points closer to the query point contributes larger value to be assigned to the membership function of their corresponding class in comparison to far away neighbors. Class with the highest membership function value is taken as the winner. The FKNN method has been frequently used for the classification of biological data [28][29][30], image data [31][32] and so on. Nevertheless, only few works have paid attention to using FKNN to dealing with the financial problems. Bian et al. [33] used FKNN as a reference classifier in their experiments in order to show the superiority of the proposed Fuzzy-rough KNN method, which incorporated the rough set theory into FKNN to further improve the accuracy of bankruptcy prediction. However, they did not comprehensively investigate the neighborhood size k and the fuzzy strength parameter m, which play a significant role in improving the prediction result. This work will explore the full potential of FKNN by automatically determining k and m to exploit the maximum classification accuracy for bankruptcy prediction.

Besides choosing a good learning algorithm, feature selection is also an important issue in building the bankruptcy prediction models [25][34][35][36][37], which refers to choosing subset of attributes from the set of original attributes. The purpose of the feature selection is to identify the significant features and build a good learning model. The benefits of feature selection are threefold: improving the prediction performance of the predictors, providing faster and more cost-effective predictors, and providing a better understanding of the underlying process that generated the data [38]. In bankruptcy prediction, genetic algorithms (GA) is usually used to select a subset of input features [39][40][41], to find appropriate hyper-parameter values of a predictor (for example, the kernel width and the regularization constant in the case of SVM) [35][42][43], or to determine predictor parameters (for example, Multilayer perceptron weights) [44][45]. Compared with GA, PSO algorithm [46] has no crossover and mutation operators, it is simple and computationally inexpensive both in memory and runtime. Additionally, every particle adjusts their velocity and position according to the local best and global best. So that all the particles have
a powerful search capability, which can help the swarm find the optimal solution. As for GA, after finding a locally optimum, it is difficult for it to find out a much better one even with a random search strategy in terms of mutation operator especially within a reasonable searching time. In this work, we will focus on exploring the PSO-based parameter optimization and feature selection approach. The continuous PSO algorithm will be employed to evolve an adaptive FKNN, where the neighborhood size k and the fuzzy strength parameter m are adaptively specified. On the other hand, the binary PSO will be used as a feature selection vehicle to identify the most informative features as well.

When dealing with the practical problems, the evolutionary-based methods such as the PSO and GA will cost a lot of computational time. There is an urgent need to improve the performance using high-performance computing techniques. For this reason, it is one of the major purposes of this paper to use a parallel environment to speed up the search and optimization process. Both the continuous and binary PSO are implemented on a multi-core platform using OpenMP (Open Multi-Processing) which is a portable, scalable model that gives programmers a simple and flexible interface for developing parallel applications for platforms [47]. The efficiency and effectiveness of the proposed bankruptcy prediction model is validated by comparing with other five state-of-the-art classification methods on two real-life cases. The experimental results demonstrate that the proposed model can not only obtain the most appropriate parameters but also show high discriminating power as a feature selection tool. Further comparison is also made between the parallel model and serial one. Based on the experiments conducted, it is inferred that the parallel model PTVPSO-FKNN can significantly reduce the computational time.

The rest of the paper is organized as follows. In Section 2, we give a brief description of FKNN method and PSO algorithm. Section 3 proposes our model, the simultaneous optimization of relevant parameters and feature subset by the PSO approach in a parallel environment. In the next section, the detailed experimental design is presented, and Section 5 describes all the empirical results and discussion. Finally, Conclusions and future work are summarized in Section 6.

2. Background Materials

2.1 Fuzzy k-Nearest Neighbor Algorithm

The k-nearest neighbor algorithm (KNN) is one of the oldest and simplest non-parametric pattern classification methods. In the KNN algorithm a class is assigned according to the most common class amongst its k-nearest neighbors. In 1985, Keller proposed a fuzzy version of KNN by incorporating the fuzzy set theory into the KNN algorithm, and named it as “fuzzy KNN classifier algorithm” (FKNN) [27]. According to his approach, rather than individual classes as in KNN, the fuzzy memberships of samples are assigned to different categories according to the following formulation:

$$u_i(x) = \frac{\sum_{j=1}^{k} u_j(l/\|x-x_j\|^2)^{(m-1)}}{\sum_{j=1}^{k} (l/\|x-x_j\|^2)^{(m-1)}}$$

(1)

where $i=1,2,...,C$, and $j=1,2,...,k$, with C number of classes and k number of nearest neighbors. The fuzzy strength parameter m is used to determine how heavily the distance is weighted when calculating each neighbor’s contribution to the membership value, and its value is usually chosen
as \(m \in (1, \infty) \). \(\| x - x_j \| \) is the distance between \(x \) and its \(j \)th nearest neighbor \(x_j \). Various metrics can be chosen for \(\| x - x_j \| \), such as Euclidean distance, Hamming distance, and Mahalanobis distance, among other distances. In this study, the Euclidean metric is used. \(u_{ij} \) is the membership degree of the pattern \(x_i \) from the training set to the class \(i \), among the \(k \) nearest neighbors of \(x \). There are two ways [27] to define \(u_{ij} \), one way is the crisp membership, i.e., each training pattern has complete membership in their known class and non-memberships in all other classes. The other way is the constrained fuzzy membership, i.e., the \(k \) nearest neighbors of each training pattern (say \(x_k \)) are found, and the membership of \(x_k \) in each class is assigned as:

\[
 u_{ij}(x_k) = \begin{cases}
 0.51 + (n_j/K)*0.49, & \text{if } j = i \\
 (n_j/K)*0.49, & \text{if } j \neq i.
\end{cases}
\tag{2}
\]

The value \(n_j \) is the number of neighbors found which belong to the \(j \)th class. Note that, the memberships calculated by Eq. (2) should satisfy the following equations:

\[
 \sum_{i=1}^{C} \mu_{ij} = 1, \quad j = 1, 2, \ldots, n, \tag{3}
\]

\[
 0 < \sum_{j=1}^{n} u_{ij} < n, \tag{4}
\]

\[
 u_{ij} \in [0,1]. \tag{5}
\]

In our experiments, we have found that the second way leads to better classification accuracy. After calculating all the memberships for a query sample, it is assigned to the class with which it has the highest membership value, i.e.,

\[
 C(x) = \arg \max_{i=1}^{C} (u_i(x)) \tag{6}
\]

The pseudo-code of the FKNN algorithm is given below:

Input: (a) The training set \(X \) with the labeled patterns \(\{ x_i \mid i = 1, 2, \ldots, n \} \).

(b) The test pattern \(y \).

Output: (a) Class label of \(y \).

(b) Confidence for each class label.

ALGORITHM:

For \(i = 1, 2, \ldots, n \)

Compute the distance from \(x_i \) to \(y \) using the Euclidean metric.

If \(i \leq k \)

Include \(x_i \) in the set of \(k \) nearest neighbors.

Else if (\(x_i \) is closer to \(y \) than any previous nearest neighbors)

Delete the farthest of the \(k \) nearest neighbors.

Include \(x_i \) in the set of \(k \) nearest neighbors.

End if

End for

For \(c = 1 \) to \(C \)

Compute \(u_c(x) \) using (1).

End for

Crisp class label of \(y \) is assigned to the class with which it has the highest membership value.
2.2 Time Variant Particle Swarm Optimization (TVPSO)

PSO is inspired by the social behavior of organisms such as bird flocking and fish schooling, which was first developed by Kennedy and Eberhart [46][48]. In PSO each individual is treated as a particle in d-dimensional space, and each particle has a position and velocity. The position vector of the ith particle is represented as $X_i = (x_{i,1}, x_{i,2}, \ldots, x_{i,d})$, and its according velocity is represented as $V_i = (v_{i,1}, v_{i,2}, \ldots, v_{i,d})$. The velocity and position are updated as follows:

$$\begin{align*}
 v_{i,j}^{n+1} &= w \times v_{i,j}^n + c_1 \times r_1 \times (p_{i,j}^n - x_{i,j}^n) + c_2 \times r_2 \times (p_{g,j}^n - x_{i,j}^n) \\
 x_{i,j}^{n+1} &= x_{i,j}^n + v_{i,j}^{n+1}, j = 1, 2, \ldots, d
\end{align*}$$

where V_i represents the best previous position of the ith particle that gives the best fitness value, which is known as the personal best position (p_{best}). V_g is the best particle among all the particles in the population, which is known as the global best position (g_{best}). r_1 and r_2 are random numbers, generated uniformly in the range $[0, 1]$. The velocity $v_{i,j}$ is restricted to the range $[-v_{max}, v_{max}]$, in order to prevent the particles from flying out of the solution space. Generally, v_{max} is suggested to set to be 10-20% of the dynamic range of the variable in each dimension [49].

Inertia weight w, introduced by Shi and Eberhart, which is used to balance the global exploration and local exploitation [50]. A large inertia weight facilitates the global search, while a small inertia weight facilitates the local search. In order to reduce the weight over the iterations allowing the algorithm to exploit some specific areas, the inertia weight w is updated according to the following equation:

$$w = w_{min} + (w_{max} - w_{min}) \frac{(t_{max} - t)}{t_{max}}$$

where w_{max}, w_{min} are the predefined maximum and minimum values of the inertia weight w, t is the current iteration of the algorithm and t_{max} is the maximum number of iterations. Usually the value of w is varied between 0.9 and 0.4. Eq. (9) is also known as time-varying inertia weight (TVIW), which will be incorporated into the TVPSO. It has been shown to significantly improve the performance of PSO [51], since it makes PSO have more global search ability at the beginning of the run and have more local search ability near the end of the run. c_1 and c_2 are acceleration coefficients, which define the magnitude of the influences on the particles velocity in the directions of the personal and the global optima, respectively. To better balance the search space between the global exploration and local exploitation, time-varying acceleration coefficients (TVAC) have been introduced in [52]. This concept will be adopted in this study to ensure the better search for the solutions. The core idea of TVAC is that c_1 decreases from its initial value of c_{i_1} to c_{f_1}, while c_2 increases from c_{i_2} to c_{f_2} using the following equations as in [52].

TVAC can be mathematically represented as follows:

$$c_i = (c_{f_i} - c_{i_1}) \frac{t}{t_{max}} + c_{i_1},$$

where $i = 1, 2$.
\[c_2 = (c_{2f} - c_{2i}) \frac{t}{t_{\text{max}}} + c_{2i}. \]

(11)

where \(c_{1f}, c_{1i}, c_{2f} \) and \(c_{2i} \) are constants, \(t \) is the current iteration of the algorithm and \(t_{\text{max}} \) is the maximum number of iterations.

For the binary PSO, the discrete PSO version introduced by Kennedy and Eberhart [53] was adopted in this study. The binary PSO is searching in a discrete space (i.e., searching in a space where ‘0’ presents the feature is selected ‘1’ denotes the feature is discarded). Where a particle moves in a state space restricted to zero and one on each dimension, in terms of the changes in probabilities that a bit will be in one state or the other. If the velocity is high it is more likely to choose ‘1’, and lower values favor choosing ‘0’. A sigmoid function is applied to transform the velocity from continuous space to probability space:

\[\text{sig}(v_{ij}) = \frac{1}{1 + \exp(-v_{ij})}, j = 1,2,\ldots,d \]

(12)

The velocity update Eq. (7) keeps unchanged except that \(x_{ij}, p_{ij} \) and \(p_{g,j} \in \{0,1\} \), and in order to ensure that bit can transfer between ‘1’ and ‘0’ with a positive probability, \(v_{\text{max}} \) was introduced to limit \(v_{ij} \). The new particle position is updated using the following rule:

\[x_{ij}^{n+1} = \begin{cases} 1, & \text{if } \text{rnd} < \text{sig}(v_{ij}) \\ 0, & \text{if } \text{rnd} \geq \text{sig}(v_{ij}) \end{cases}, j = 1,2,\ldots,d \]

(13)

where \(\text{sig}(v_{ij}) \) is calculated according to Eq. (12), \(\text{rnd} \) is a uniform random number in the range \([0,1]\).

As described above, TVPSO is adaptive in nature by allowing its inertia weight and acceleration coefficients to vary with iterations during its search in the continuous and discrete space. This character helps the algorithm explore the search space to a greater extent.

3. Proposed PTVPSO-FKNN Prediction Model

In this section, we describe the proposed PTVPSO-FKNN model for bankruptcy prediction. As mentioned in the Introduction, the aim of this model is to optimize the FKNN classifier by automatically: 1) determining the number of nearest neighbors \(k \) and the fuzzy strength parameter \(m \) and 2) identifying the subset of best discriminative features. In order to achieve this goal, the continuous and binary PSO are combined together to dynamically conduct parameter optimization and feature selection simultaneously. The obtained appropriate feature subset is served as the input into the optimized FKNN model for classification. PTVPSO-FKNN takes into consideration two fitness values for parameter optimization and feature selection. One is the AUC value and the other is the number of selected features by TVPSO. Here, we first describe the model based on the serial PSO algorithm, termed TVPSO-FKNN, and then implement it in parallel.

3.1 TVPSO-FKNN Model based on the Serial PSO Algorithm

The flowchart of the TVPSO-FKNN model for bankruptcy prediction was constructed through the
following main steps as shown in Fig. 1.

Step 1: Encode the particle with \(n+2 \) dimensions. The first two dimensions are \(k \) and \(m \) which are continuous values. The remaining \(n \) dimensions is Boolean features mask, which is represented by discrete value, ‘1’ indicates the feature is selected, and ‘0’ represents the feature is discarded.

Step 2: Initialize the individuals of the population with random numbers. Meanwhile, specify the PSO parameters including the lower and upper bounds of the velocity, the size of particles, the number of iterations, etc.

Step 3: Train the FKNN model with the selected features.

Step 4: It is well known that higher the AUC value the better the classifier is said to be. The particle with high AUC value and the small number of selected features can produce a high fitness value. Hence, we took both of them into consideration in designing the objective function, the fitness value was calculated according to the following objective function:

\[
\begin{align*}
 f_i &= \text{AUC} \\
 f_2 &= (1 - \frac{\sum_{i=1}^{n} f_i}{n}) \\
 f &= \alpha \times f_1 + \beta \times f_2
\end{align*}
\]

(14)

where variable AUC in the first sub-objective function \(f_1 \) represents the area under the ROC curve achieved by the FKNN classifier via \(K \)-fold cross-validation (CV), here \(K=5 \). Note that here the 5-fold CV is used to determine the optimal parameters (including \(k \) and \(m \)) which is different from the outer loop of 10-fold CV, which is used to do the performance estimation. In the second sub-objective function \(f_2 \), \(f_i \) is the value of feature mask (‘1’ represents that feature is selected and ‘0’ indicates that feature is discarded), \(n \) is the total number of features. The weighted summation of the two sub-objective functions is selected as the final objective function. In the function \(f \), \(\alpha \) is the weight for FKNN classification accuracy, \(\beta \) indicates the weight for the selected features. The weight can be adjusted to a proper value depends on the importance of the sub-objective function. Because the classification performance more depend on the classification accuracy, hence the \(\alpha \) value is set as much bigger than that of \(\beta \). According to our preliminary experiments, the value of \(\alpha \) and \(\beta \) were taken as 0.85 and 0.15 respectively. After the fitness value was obtained, the global optimal fitness was saved as \(gfit \), personal optimal fitness as \(pfit \), global optimal particle as \(gbest \) and personal optimal particle as \(pbest \).

Step 5: Increase the number of iteration.

Step 6: Increase the number of population. Update the position and velocity of \(k, m \) using Eqs.\((7-8)\) and the features using Eq.\((7)\), Eqs.\((12-13)\) in each particle.

Step 7: Train the FKNN classifier with the feature vector obtained in Step 6 and calculate the fitness value of each particle according to Eq. \((14)\). Notice that PSO is used for optimization tasks where the neighborhood size \(k \) to be optimized is integer number. Hence, an extra step is taken to round the encoded value \(k \) to the nearest integer number before the particle is evaluated.

Step 8: Update the personal optimal fitness (\(pfit \)) and personal optimal position (\(pbest \)) by
comparing the current fitness value with the $pfit$ stored in the memory. If the current fitness is dominated by the $pfit$ stored in the memory, then keep the $pfit$ and $pbest$ in the memory; otherwise, replace the $pfit$ and $pbest$ in the memory with the current fitness value and particle position.

Step 9: If the size of the population is reached, then go to Step 10. Otherwise, go to Step 6.

Step 10: Update the global optimal fitness ($gfit$) and global optimal particle ($gbest$) by comparing the $gfit$ with the optimal $pfit$ from the whole population. If the current optimal $pfit$ is dominated by the $gfit$ stored in the memory, then keep the $gfit$ and $gbest$ in the memory; otherwise, replace the $gfit$ and $gbest$ in the memory with the current optimal $pfit$ and the optimal $pbest$ from the whole population.

Step 11: If the stopping criteria are satisfied, then go to Step 12. Otherwise, go to Step 5. The termination criteria are that the iteration number reaches the maximum number of iterations or the value of $gfit$ does not improve after 100 consecutive iterations.

Step 12: Get the optimal (k, m) and feature subset from the best particle ($gbest$).

3.2 Parallel Implementation of the TVPSO-FKNN (PTVPSO-FKNN)

When dealing with the practical problems, the evolutionary-based methods such as PSO and GA will cost a lot of computational time. There is an urgent need to improve the performance using high-performance computing techniques. Consequently, we attempt to implement TVPSO-FKNN in parallel on multi-core processor by using OpenMP to speed up the search and optimization process.

The architecture of the multi-core platform is divided into three layers as shown in Fig. 2: 1) TVPSO-FKNN: It consists of a number of particles, which can supply computing requirements. The parallel algorithm controls the iterations of particles and each particle is calculated separately. 2) OpenMP: This component guarantees to implement parallel synchronization and establish the communications with operating system (OS). The main part of OpenMP is scheduler, which provides the system with job scheduling and allocation. 3) Multi-core processor: The job is dispatched by OpenMP via OS.

The pseudo-code of the parallel PTVPSO-FKNN is as follows:

```
Initialize system parameters.
Train FKNN model.
Calculate fitness.
While (cni < mni) /*current number of iteration (cni), maximum number of iteration (mni).*/
    For each particle
        Update position.
        Update velocity.
```
Train FKNN model.
Calculate fitness.
Calculate $pfit$. /* personal optimal fitness ($pfit$)*/
Calculate $pbest$. /* personal optimal position ($pbest$)*/
End for
Calculate $gfit$. /*global optimal fitness ($gfit$)*/
Calculate $gbest$. /*global optimal particle ($gbest$)*/
\[cni = cni + 1. \]
End while

4 Experimental Design

4.1 Data Description

The first financial data used for this study is the Wieslaw [54] dataset which contains 30 financial ratios and 240 cases in total (112 from bankrupt Polish companies and 128 from non-bankrupt ones between 1997 and 2001). All the observations cover the period spanning 2 to 5 years before bankruptcy took place. It should be noted that the size of the dataset is not that large compared to the majority of bankruptcy prediction studies. However, according to [55], the dataset is reliable since increasing the dataset length does not lead to the accuracy increase. The description of the 30 financial ratios is shown in Table 1. Fig. 3 illustrates the distribution of the two classes of 240 samples in the subspace formed by the two best features according to the principal component analysis algorithm [56]. As shown in this figure, there is apparently strong overlap between the bankrupt companies and non-bankrupt ones.

<Insert Fig.3 here>
<Insert Table 1 here>

The second dataset is the Australian credit dataset, is available from the UCI Repository of Machine Learning Databases. The Australian credit data consists of 307 instances of creditworthy applicants and 383 instances where credit is not creditworthy. Each instance contains 6 nominal, 8 numeric attributes, and 1 class attribute (accepted or rejected). This dataset is interesting because there is a good mixture of attributes: continuous, nominal with small numbers of values, and nominal with larger numbers of values. There are also a few missing values. To protect the confidentiality of data, the attributes names and values have been changed to meaningless symbolic data.

Normalization is employed to avoid feature values in greater numerical ranges dominating those in smaller numerical ranges, as well as to avoid the numerical difficulties during the calculation [57]. Generally, the data could be normalized by scaling them into the interval of [0, 1] or [-1, 1], here we chose the range of [-1, 1] according to the Eq. (15), where x is the original value, x' is the scaled value, max_a is the maximum value of feature a, and min_a is the minimum value of feature a.

\[
x' = (\frac{x - min_a}{max_a - min_a}) \times 2 - 1 \tag{15}
\]
In order to gain an unbiased estimate of the generalization accuracy, the k-fold CV presented by Salzberg [58] was used to evaluate the classification accuracy. This study set k as 10, i.e., the data was divided into ten subsets. Each time, one of the 10 subsets is used as the test set and the other 9 subsets are put together to form a training set. Then the average error across all 10 trials is computed. The advantage of this method is that all of the test sets are independent and the reliability of the results could be improved. And we attempted to design our experiment using two loops. The inner loop is used to determine the optimal parameters and best feature subset for the FKNN classifier. The outer loop is used for estimating the performance of the FKNN classifier. In order to keep the same proportion of bankrupt and non-bankrupt companies of each set as that of the entire dataset, here a stratified 10-fold CV is employed as the outer loop and a stratified 9-fold CV is used for the inner loop. It is also referred to as the nested stratified 10-fold CV, which is also used in [59] for the microarray gene data analysis.

4.2 Experimental Scheme

The proposed experimental framework was articulated around the following three main experiments.

1) The first experiment aimed at assessing the effectiveness of the FKNN approach in bankruptcy prediction in the whole original feature space. For comparison purpose, we implemented five other reference classification approaches, namely KNN, SVM [60], back propagation neural network (BPNN), the probabilistic neural network (PNN) and extreme learning machine (ELM) [61]. In addition, we have implemented GA based FKNN (GA-FKNN) for comparison purpose.

2) In the second experiment, it was plan to assess the capability of the proposed PTVPSO-FKNN model with feature selection to boost further the performance of the FKNN classifier by using the time-varying PSO approach. Furthermore, we attempted to investigate the whole evolutionary process of TVPSO in performing the parameter optimization and feature selection.

3) The third experimental part had for objective to assess the capability of the proposed parallel TVPSO-FKNN model to enhance further the efficiency of the serial TVPSO-FKNN model with respect to the CPU time.

4.3 Experimental Setup

The proposed PTVPSO-FKNN model is implemented using Microsoft Visual C++ 6.0 and OpenMP. For SVM, LIBSVM implementation is utilized, which is originally developed by Chang and Lin [62]. Regarding ELM, the implementation by Zhu and Huang available from http://www3.ntu.edu.sg/home/egbhuang is used. We implement PSO, GA, FKNN and KNN from scratch. BPNN and PNN are developed by using the Neural Network Toolbox of Matlab 7.0. The computer is Intel Quad-Core Xeon 2.0 GHz CPU; 4 GB RAM and the system is Windows Server 2003.

The detail parameter setting for PTVPSO-FKNN is as follows. The number of the iterations and particles are set to 250 and 8 for the Wieslaw dataset, 200 and 5 for the Australian dataset, respectively. The searching ranges for k and m are as follows: $k \in [1, 100]$ and $m \in [1, 10]$ for the Wieslaw dataset, $k \in [1, 100]$ and $m \in [1, 100]$ for the Australian dataset. v_{max} is set about 60% of the dynamic range of the variable on each dimension for the continuous type of dimensions. For
the discrete type particle for feature selection, $[-v_{max}, v_{max}]$ is set as $[-6, 6]$. As suggested in [52], c_1, c_1, c_2, and c_2 are set as follows: $c_1=2.5$, $c_1=0.5$, $c_2=0.5$, $c_2=2.5$. According to our preliminary experiment, w_{max} and w_{min} are set to 0.9 and 0.4, respectively.

For GA, the solution is binary-encoded and the roulette wheel selection algorithm is used. The crossover probability and mutation probability are set to 0.8 and 0.05, respectively. To perform a fair comparison, the same computational effort is used in TVPSO and GA. That is, the maximum generation, population size and searching range of the parameters in GA are the same as those in TVPSO. For SVM, we consider the nonlinear SVM based on the popular Gaussian (RBF) kernel, and a grid-search technique [57] is employed using 10-fold CV to find out the optimal parameter values of RBF kernel function. The range of the related parameters C and γ are varied between $C = \{2^{-5}, 2^{-3}, ..., 2^{15}\}$ and $\gamma = \{2^{-15}, 2^{-13}, ..., 2^{1}\}$. There will be $11 \times 9 = 99$ parameter combinations of (C, γ) are tried and the one with the best CV accuracy is chosen as the parameter values of the RBF kernel. Then the best parameter pair (C, γ) is used to create the model for training. For KNN, we find the best value of k within the range $[1, 100]$ by using 10-fold CV. Concerning BPNN, we use the three layer back-propagation network. We try different settings of the number of nodes in the hidden layers (5, 10, 15, 20, 25 and 30) and the different learning epochs (50, 100, 200 and 300) as the stopping criteria for training. In PNN, the pattern layer uses RBF neuron with spread parameter of 0.1 and 0.8 give the best accuracies by using the 10-fold CV on the Wieslaw dataset and Australian dataset, respectively. Hence these two values will be used for the subsequent analysis. In ELM the sigmoid activation function is used to compute the hidden layer output matrix. ELM models are built for 100 different numbers of neurons between 1 and 100. The best number of neurons will be taken to create the training model.

4.4 Measure for Performance Evaluation

Type I error, Type II error, total classification accuracy (ACC) and the area under the Receiver Operating Characteristic curve (AUC) [63] were used to test the performance of the proposed PTVPSO-FKNN model. They are the most widely used measures to assess the performance of bankruptcy prediction systems [25]. Before defining these measures, we introduced the concept of confusion matrix, which is presented in Table 2. Where TP is the number of true positives, which means that some cases with ‘positive’ class (with bankruptcy) is correctly classified as positive; FN, the number of false negatives, which means that some cases with the ‘positive’ class is classified as negative; TN, the number of true negatives, which means that some cases with the ‘negative’ class (with non-bankruptcy) is correctly classified as negative; and FP, the number of false positives, which means that some cases with the ‘negative’ class is classified as positive.

Type I and Type II errors are two important measures which describe how well the classifier discriminates between case with non-bankruptcy and with bankruptcy. Type I error measures the proportion of non-bankrupt cases which are incorrectly identified as bankrupt ones. It is defined as Type I error = FP / (FP + TN). Type II error measures the proportion of bankrupt cases which are incorrectly identified as non-bankrupt ones. It is defined as Type II error = FN / (TP + FN). The ACC is calculated by TP + TN / (TP + FN + FN + TN). The receiver operating characteristic (ROC) curve is a graphical display that gives the measure of the predictive accuracy of a logistic model.
The curve displays the true positive rate and false positive rate. AUC is the area under the ROC curve, which is one of the best methods for comparing classifiers in two-class problems.

5 Experimental Results and Discussion

5.1 Experiment I: Classification in the Whole Original Feature Space

As mentioned earlier, in this experiment we evaluated the effectiveness of the proposed model on the original feature space. In order to verify the effectiveness of the proposed model, TVPSO-FKNN was compared with five other reference classifiers (SVM, KNN, BPNN, PNN and ELM). Table 3 and Table 4 show the results achieved with all six investigated classifiers (PTVPSO-FKNN, SVM, KNN, BPNN, PNN and ELM) for the Wieslaw dataset and the Australian dataset respectively. It is well known that higher the AUC value the better the classifier is said to be. Accordingly, the classifiers are arranged in the descending order of AUC in the tables. As clearly indicated in Table 3, PTVPSO-FKNN outperforms all other methods with the AUC of 81.69%, except the Type II error which is slightly higher than that of PNN. PNN is next to PTVPSO-FKNN with the AUC of 79.89%, Type I error of 21.71%, Type II error of 18.52% and ACC of 79.58%, followed by BPNN, KNN, ELM and SVM. For the Australian dataset whose results are shown in Table 4, we can also observe that PTVPSO-FKNN performs best among all the available methods with the AUC of 87.07%, except the Type I error which is slightly higher than that of SVM. SVM is next to PTVPSO-FKNN with the AUC of 86.08%, Type I error of 9.36%, Type II error of 18.47% and ACC of 85.80%, followed by ELM, KNN, BPNN and PNN. The results are interesting and exciting, which suggests that the FKNN approach can become a promising alternative bankruptcy prediction tool in financial decision-making, where SVM and ANN are known to be the best models [26].

<Insert Table 3 here>
<Insert Table 4 here>

The better performance of the proposed model is owing to the fact that the TVPSO has aided the FKNN classifier to achieve the maximum classification performance by automatically detecting the optimal neighborhood size k and the fuzzy strength parameter m. The detailed results obtained by the proposed method via 10-fold CV are shown in Table 5 and Table 6 for the Wieslaw dataset and the Australian dataset respectively. As shown in the two tables, it can be observed that the values of k and m are different for each fold of the data. With the optimal combination of k and m, FKNN obtained different best classification performance in each fold in terms of the ACC, Type I error, Type II error and AUC. In addition, according to our preliminary experiment, k and m can be varied automatically when perform another run of 10-fold CV. The explanation lies in the fact that the two parameters are evolved together by the TVPSO algorithm according to the specific distribution of the training data at hand. It indicates that the optimal values of k and m can always be adaptively specified by TVPSO during each run.

<Insert Table 5 here>
<Insert Table 6 here>
5.2 Experiment II: Classification with the PTVPSO-FKNN Model with Feature Selection

As described earlier, the proposed PTVPSO-FKNN model aimed at enhancing the FKNN classification process by not only dealing with the parameters optimization but also automatically identifying the subset of the most discriminative features. In this experiment, we attempt to explore the capability of the PTVPSO-FKNN to further enhance the performance of the FKNN classifier by using the TVPSO. Table 7 and Table 8 list the results of PTVPSO-FKNN with and without feature selection for the Wieslaw dataset and the Australian dataset respectively. As shown in Table 7, results obtained on the Wieslaw dataset using PTVPSO-FKNN with feature selection significantly outperforms PTVPSO-FKNN without feature selection in terms of Type I error, Type II error, AUC and ACC at the statistical significance level of 0.05. On the Australian dataset, PTVPSO-FKNN with feature selection significantly outperforms PTVPSO-FKNN without feature selection in terms of Type I error, AUC and ACC at the statistical significance level of 0.1. By using feature selection, the ACC, AUC, Type I error and Type II error have been improved by 2.5%, 2.55%, 1.71% and 3.38% on the Wieslaw dataset, and by 2.47%, 2.74%, 4.03% and 1.47% on the Australian dataset, respectively. For comparison purpose, we conducted the comparative study between TVPSO based and GA based FKNN on the two datasets as shown in Table 9 and Table 10. From Table 9, it can be seen that PTVPSO-FKNN outperforms GA-FKNN in terms of Type I error, AUC and ACC on the Wieslaw dataset, though the difference between them is not statistically significant. For the Australian dataset, PTVPSO-FKNN significantly outperforms GA-FKNN in terms of AUC and ACC at the significant level of 0.1, and achieves better performance in terms of Type I error and Type II error as shown in Table 10. From the tables, we can also find that PTVPSO-FKNN has achieved better performance with a smaller feature subset than GA-FKNN on both datasets under investigation. Moreover, during the evolving process, we also observe that the convergence speed of TVPSO is faster than that of GA, and GA is more time-consuming than TVPSO as well. It reflects that TVPSO has stronger search ability than GA on the tested problems. In addition, it is interesting to see that the standard deviation for the acquired performance by the PTVPSO-FKNN is much smaller than that of GA-FKNN on both datasets, which indicates consistency and stability of the proposed model.

To explore how many features and what features are selected during the PSO feature selection procedure, we attempted to further investigate the detail of the feature selection mechanism of the PSO algorithm. For simplicity, here we only took the Wieslaw dataset for example. The original numbers of features of the dataset is 30. As shown in Table 11, not all features are selected for classification after the feature selection. Furthermore, feature selection has increased the classification accuracy, as demonstrated in Table 7 and Table 8. The average number of selected features by PTVPSO-FKNN is 15.3, and its most important features are C/CL(X1), C/TA(X2), CA/TA(X4), WC/TA(X5), S/I(X7), NP/TA(X9), S/R2(X16), S/CA(X18), S/TA2(X20), R/L(X23), L/TA(X25) and LTL/E(X27), which can be found in the frequency of the selected features of
10-fold CV as shown in Fig. 4. Note that the important features (financial ratios) selected by the proposed model are indeed important from the knowledge perspective also as they are related to current liabilities and long term liabilities, current assets, shareholders’ equity and cash, sales, inventory, working capital, net profit, receivables, liabilities, total assets.

To observe the evolutionary process in PTVPSO-FKNN, Fig. 5 shows the evolution of the best fitness for fold 1# within 10-fold CV on the Wieslaw dataset. It should be noted that these results are calculated based on the global best positions, namely, the fitness of all the local best positions on the training set are calculated to obtain the best fitness of the population in each generation. The evolutionary processes are quite interesting. It can be observed that the fitness curves gradually improved from iteration 1 to 130 and exhibited no significant improvements after iteration 22, eventually stopped at the iteration 130 where the particles reached the stopping criterion (100 successively same gbest values). The fitness increase rapidly in the beginning of the evolution, after certain number of generations, it starts increasing slowly. During the latter part of the evolution, the fitness keeps stability until the stopping criterion is satisfied. This demonstrates that PTVPSO-FKNN can converge quickly toward the global optima, and fine tune the solutions very efficiently. The phenomenon illustrates the effectiveness of PTVPSO-FKNN in simultaneously evolving the parameters (k and m) and the features through using the TVPSO algorithm.

5.3 Experiment III: Comparison between the Parallel TVPSO-FKNN Model and the Serial One

In order to reduce further the running time of the serial TVPSO-FKNN model, we implemented the TVPSO-FKNN model in a parallel environment. To validate the efficiency of the parallel version, here we attempted to compare the performance of the PTVPSO-FKNN with that of TVPSO-FKNN. Table 12 reports the average results of Type I error, Type II error, AUC, ACC and computational time in seconds via 10-fold CV using two models on the two datasets. It can be seen that PTVPSO-FKNN and TVPSO-FKNN give almost the same results on both datasets, minor difference between the parallel model and the serial one is attributed to different partitions of the data are chosen when perform different folds within 10-fold CV. Thus, it verifies the correctness of the parallel design and implementation.

As shown in the Table 12, it can be seen that the average training time within the 10-fold CV for the TVPSO-FKNN was about 3.2 times that of the PTVPSO-FKNN on the Wieslaw dataset, while about 3.3 times that of PTVPSO-FKNN on the Australian dataset. Moreover, the average CPU time spent by the two methods within 10-fold CV has been presented in Fig.6. It can be observed that PTVPSO-FKNN cost much fewer CPU time than TVPSO-FKNN on each fold of the dataset.
It indicates that the TVPSO-FKNN has benefited a great deal from the parallel implementation with respect to the computational time. It is worth noticing that here only a quad-core processor is used in this experiment, thus the computational time will be further reduced with increase of the cores.

6 Conclusions and Future work

This study provides a novel model for bankruptcy prediction. The main novelty of this model is in the proposed TVPSO-based approach, which aims at aiding the FKNN classifier to achieve the maximum classification performance. On the one hand, the continuous TVPSO is employed to adaptively specify the two important parameters k and m of the FKNN classifier. On the other hand, the binary TVPSO is adopted to identify the most discriminative features. Moreover, both the continuous and binary TVPSO are implemented in a parallel environment to reduce further the computational time. The experimental results demonstrate that the developed model performs significantly better than the other five state-of-the-art classifiers (KNN, SVM, BPNN, PNN and ELM) in financial application field in terms of Type I error, Type II error, ACC and AUC on two real-life cases. In addition, the experiment reveals that the PTVPSO-FKNN is also a powerful feature selection tool which has detected a subset of best discriminative financial ratios that are really important from the knowledge perspective. Last but not least, the proposed model computes rather efficiently owing to the high performance computing technology.

Hence, it can be safely concluded that, the developed PTVPSO-FKNN model can serve as a promising alternative early warning system in financial decision-making. Meanwhile, we should note that the proposed model does perform efficiently on the data at hand; however, it is not obvious that the parallel algorithm will lead to significant improvement when applying to the financial data with larger instances. Future investigation will pay much attention to evaluating the proposed model in the larger datasets.

7 Acknowledgements

This research is supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 60873149, 60973088, 60773099 and the National High-Tech Research and Development Plan of China under Grant Nos. 2006AA10Z245, 2006AA10A309. This work is also supported by the Open Projects of Shanghai Key Laboratory of Intelligent Information Processing in Fudan University under the Grant No. IIPL-09-007, the Open Project Program of the National Laboratory of Pattern Recognition (NLPR) and the basic scientific research fund of Chinese Ministry of Education.

References

[22]. Sun, L. and P.P. Shenoy, Using Bayesian networks for bankruptcy prediction: Some

Figure Captions:

Fig.1. Flowchart of the TVPSO-FKNN model
Fig.2. Parallel architecture of the PTVPSO-FKNN model
Fig.3. Two-dimensional distribution of the two classes (bankrupt and non-bankrupt) in the subspace formed by the best couple of features obtained with the PCA algorithm
Fig.4. The frequency of the selected features via 10-fold CV on the Wieslaw dataset
Fig.5. The best fitness during the training stage for fold #1 on the Wieslaw dataset
Fig.6. The average CPU time costs of two models via 10-fold CV on the Wieslaw dataset and Australian dataset (The legend TVPSO-FKNN-WIE and PTVPSO-FKNN-WIE represent the serial model and the parallel model performing on the Wieslaw dataset respectively, TVPSO-FKNN-AUS and PTVPSO-FKNN-AUS represent the serial model and the parallel model performing on the Australian dataset respectively).

Table Captions:

Table 1 The description of the Wieslaw dataset
Table 2 Confusion matrix for bankruptcy prediction
Table 3 The ACC, Type I error, Type II error and AUC achieved by different classifiers on the Wieslaw dataset
Table 4 The ACC, Type I error, Type II error and AUC achieved by different classifiers on the Australian dataset
Table 5 The detailed results obtained by TVPSO-FKNN via 10-fold CV on the Wieslaw dataset
Table 6 The detailed results obtained by TVPSO-FKNN via 10-fold CV on the Australian dataset
Table 7 Experimental results of PTVPSO-FKNN with and without feature selection (%) on the Wieslaw dataset
Table 8 Experimental results of PTVPSO-FKNN with and without feature selection (%) on the Australian dataset
Table 9 Experimental results of PTVPSO-FKNN vs. GA-FKNN (%) on the Wieslaw dataset
Table 10 Experimental results of PTVPSO-FKNN vs. GA-FKNN (%) on the Australian dataset
Table 11 The subset of features selected by PTVPSO-FKNN via 10-fold CV on the Wieslaw dataset
Table 12 The performance of PTVPSO-FKNN and TVPSO-FKNN
Figure (1)

Parameter Optimization and Feature Selection TMSO Algorithm

Step 1: Encode k, m and features

Step 2: Initialize P, P_n, k_i, m_i, $0r1$

Step 3: Train KNN model

Step 4: Calculate fitness

Step 5: Initialize number of iterations

Step 6: Update position and velocity

Step 7: Train KNN model

Step 8: Update the optimized list (g_{fit} and p_{fit}) with the optimized fitness

Step 9: Random selection of population? Yes/No

Step 10: Update the best fitness (g_{fit}) and the optimized list (p_{fit})

Step 11: Reach the stopping point? Yes/No

Step 12: Gather the best optimized list

Testing stage:

Set $K = K + 1$

Train KNN with best (k, m) and reproduce features

Feature selection process: feature selection

Reach the best fitness? Yes/No

Calculate the accuracy
TVPSO-FKNN

OpenMP

Multi-core processor

Core 1

Core 2

Core 3

Core 4

Particles

TVPSO-FKNN

Scheduler

OpenMP

Multi-core processor

Figure(2)
Figure (4)
Figure (6)
<table>
<thead>
<tr>
<th>No.</th>
<th>Predictor variable name</th>
<th>Financial ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>cash/current liabilities</td>
<td>C/CL</td>
</tr>
<tr>
<td>X2</td>
<td>cash/total assets</td>
<td>C/TA</td>
</tr>
<tr>
<td>X3</td>
<td>current assets/current liabilities</td>
<td>CA/CL</td>
</tr>
<tr>
<td>X4</td>
<td>current assets/total assets</td>
<td>CA/TA</td>
</tr>
<tr>
<td>X5</td>
<td>working capital/total assets</td>
<td>WC/TA</td>
</tr>
<tr>
<td>X6</td>
<td>working capital/sales</td>
<td>WC/S</td>
</tr>
<tr>
<td>X7</td>
<td>sales/inventory</td>
<td>S/I</td>
</tr>
<tr>
<td>X8</td>
<td>sales/receivables</td>
<td>S/R1</td>
</tr>
<tr>
<td>X9</td>
<td>net profit/total assets</td>
<td>NP/TA</td>
</tr>
<tr>
<td>X10</td>
<td>net profit/current assets</td>
<td>NP/CA</td>
</tr>
<tr>
<td>X11</td>
<td>net profit/sales</td>
<td>NP/S1</td>
</tr>
<tr>
<td>X12</td>
<td>gross profit/sales</td>
<td>GP/S</td>
</tr>
<tr>
<td>X13</td>
<td>net profit/liabilities</td>
<td>NP/L</td>
</tr>
<tr>
<td>X14</td>
<td>net profit/equity</td>
<td>NP/E</td>
</tr>
<tr>
<td>X15</td>
<td>net profit/(equity + long term liabilities)</td>
<td>NP/EL</td>
</tr>
<tr>
<td>X16</td>
<td>sales/receivables</td>
<td>S/R2</td>
</tr>
<tr>
<td>X17</td>
<td>sales/total assets</td>
<td>S/TA1</td>
</tr>
<tr>
<td>X18</td>
<td>sales/current assets</td>
<td>S/CA</td>
</tr>
<tr>
<td>X19</td>
<td>(365*receivables)/sales</td>
<td>R/S</td>
</tr>
<tr>
<td>X20</td>
<td>sales/total assets</td>
<td>S/TA2</td>
</tr>
<tr>
<td>X21</td>
<td>liabilities/total income</td>
<td>L/TI</td>
</tr>
<tr>
<td>X22</td>
<td>current liabilities/total income</td>
<td>CL/TI</td>
</tr>
<tr>
<td>X23</td>
<td>receivables/liabilities</td>
<td>R/L</td>
</tr>
<tr>
<td>X24</td>
<td>net profit/sales</td>
<td>NP/S2</td>
</tr>
<tr>
<td>X25</td>
<td>liabilities/total assets</td>
<td>L/TA</td>
</tr>
<tr>
<td>X26</td>
<td>liabilities/equity</td>
<td>L/E</td>
</tr>
<tr>
<td>X27</td>
<td>long term liabilities/equity</td>
<td>LTL/E</td>
</tr>
<tr>
<td>X28</td>
<td>current liabilities/equity</td>
<td>CL/E</td>
</tr>
<tr>
<td>X29</td>
<td>EBIT (Earnings Before Interests and Taxes)/total assets</td>
<td>EBIT/TA</td>
</tr>
<tr>
<td>X30</td>
<td>current assets/sales</td>
<td>CA/S</td>
</tr>
<tr>
<td></td>
<td>Actual positive (Bankruptcy)</td>
<td>Actual negative (Non-Bankruptcy)</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Predicted positive</td>
<td>True Positive (TP)</td>
<td>False Positive (FP)</td>
</tr>
<tr>
<td>(Bankruptcy)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Predicted negative</td>
<td>False Negative (FN)</td>
<td>True Negative (TN)</td>
</tr>
<tr>
<td>(Non-Bankruptcy)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The best value is shown in bold.

<table>
<thead>
<tr>
<th>Classifiers</th>
<th>ACC (%)</th>
<th>Type I error (%)</th>
<th>Type II error (%)</th>
<th>AUC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTVPSO-FKNN</td>
<td>81.67</td>
<td>17.58</td>
<td>19.04</td>
<td>81.69</td>
</tr>
<tr>
<td>PNN</td>
<td>79.58</td>
<td>21.71</td>
<td>18.52</td>
<td>79.89</td>
</tr>
<tr>
<td>BPNN</td>
<td>77.92</td>
<td>20.84</td>
<td>21.46</td>
<td>78.71</td>
</tr>
<tr>
<td>KNN</td>
<td>78.75</td>
<td>21.46</td>
<td>21.39</td>
<td>78.57</td>
</tr>
<tr>
<td>ELM</td>
<td>77.50</td>
<td>19.11</td>
<td>23.97</td>
<td>78.46</td>
</tr>
<tr>
<td>SVM</td>
<td>76.67</td>
<td>18.96</td>
<td>26.55</td>
<td>77.26</td>
</tr>
</tbody>
</table>

Table(3)
The best value is shown in bold.

<table>
<thead>
<tr>
<th>Classifiers</th>
<th>ACC (%)</th>
<th>Type I error (%)</th>
<th>Type II error (%)</th>
<th>AUC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTVPSO-FKNN</td>
<td>87.10</td>
<td>13.21</td>
<td>12.66</td>
<td>87.07</td>
</tr>
<tr>
<td>SVM</td>
<td>85.80</td>
<td>9.36</td>
<td>18.47</td>
<td>86.08</td>
</tr>
<tr>
<td>ELM</td>
<td>85.65</td>
<td>12.89</td>
<td>15.31</td>
<td>85.90</td>
</tr>
<tr>
<td>KNN</td>
<td>85.80</td>
<td>12.12</td>
<td>16.25</td>
<td>85.82</td>
</tr>
<tr>
<td>BPNN</td>
<td>85.80</td>
<td>14.02</td>
<td>14.56</td>
<td>85.71</td>
</tr>
<tr>
<td>PNN</td>
<td>85.42</td>
<td>12.88</td>
<td>16.41</td>
<td>85.36</td>
</tr>
</tbody>
</table>

Table(4)
<table>
<thead>
<tr>
<th>Fold</th>
<th>#k</th>
<th>#m</th>
<th>ACC (%)</th>
<th>Type I error (%)</th>
<th>Type II error (%)</th>
<th>AUC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>100</td>
<td>1.27</td>
<td>83.3333</td>
<td>18.18</td>
<td>15.3846</td>
<td>83.2168</td>
</tr>
<tr>
<td>#2</td>
<td>55</td>
<td>1.33</td>
<td>83.3333</td>
<td>18.18</td>
<td>15.3846</td>
<td>83.2168</td>
</tr>
<tr>
<td>#3</td>
<td>56</td>
<td>1.39</td>
<td>83.3333</td>
<td>16.67</td>
<td>16.6667</td>
<td>83.3333</td>
</tr>
<tr>
<td>#4</td>
<td>84</td>
<td>1.29</td>
<td>79.1667</td>
<td>18.18</td>
<td>23.0769</td>
<td>79.3706</td>
</tr>
<tr>
<td>#5</td>
<td>38</td>
<td>1.35</td>
<td>79.1667</td>
<td>18.18</td>
<td>23.0769</td>
<td>79.3706</td>
</tr>
<tr>
<td>#6</td>
<td>66</td>
<td>1.14</td>
<td>83.3333</td>
<td>16.67</td>
<td>16.6667</td>
<td>83.3333</td>
</tr>
<tr>
<td>#7</td>
<td>66</td>
<td>1.34</td>
<td>79.1667</td>
<td>18.18</td>
<td>23.0769</td>
<td>79.3706</td>
</tr>
<tr>
<td>#8</td>
<td>1</td>
<td>1.33</td>
<td>79.1667</td>
<td>16.67</td>
<td>25.0000</td>
<td>79.1667</td>
</tr>
<tr>
<td>#9</td>
<td>1</td>
<td>3.00</td>
<td>83.3333</td>
<td>18.18</td>
<td>15.3846</td>
<td>83.2168</td>
</tr>
<tr>
<td>#10</td>
<td>14</td>
<td>1.27</td>
<td>83.3333</td>
<td>16.67</td>
<td>16.6667</td>
<td>83.3333</td>
</tr>
<tr>
<td>Avg.</td>
<td>48.10</td>
<td>1.47</td>
<td>81.67</td>
<td>17.58</td>
<td>19.04</td>
<td>81.69</td>
</tr>
<tr>
<td>Dev.</td>
<td>34.05</td>
<td>0.54</td>
<td>2.15</td>
<td>0.78</td>
<td>3.96</td>
<td>2.04</td>
</tr>
</tbody>
</table>

Table (5)
<table>
<thead>
<tr>
<th>Fold</th>
<th>#k</th>
<th>#m</th>
<th>ACC (%)</th>
<th>Type I error (%)</th>
<th>Type II error (%)</th>
<th>AUC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>8</td>
<td>74.99</td>
<td>88.41</td>
<td>22.22</td>
<td>0</td>
<td>88.89</td>
</tr>
<tr>
<td>#2</td>
<td>78</td>
<td>97.94</td>
<td>79.71</td>
<td>20.00</td>
<td>20.59</td>
<td>79.71</td>
</tr>
<tr>
<td>#3</td>
<td>77</td>
<td>95.73</td>
<td>91.30</td>
<td>12.20</td>
<td>3.57</td>
<td>92.12</td>
</tr>
<tr>
<td>#4</td>
<td>99</td>
<td>98.06</td>
<td>84.06</td>
<td>10.81</td>
<td>21.88</td>
<td>83.66</td>
</tr>
<tr>
<td>#5</td>
<td>45</td>
<td>61.80</td>
<td>88.41</td>
<td>10.53</td>
<td>12.90</td>
<td>88.29</td>
</tr>
<tr>
<td>#6</td>
<td>66</td>
<td>76.89</td>
<td>89.86</td>
<td>9.52</td>
<td>11.11</td>
<td>89.68</td>
</tr>
<tr>
<td>#7</td>
<td>9</td>
<td>23.09</td>
<td>91.30</td>
<td>10.81</td>
<td>6.25</td>
<td>91.47</td>
</tr>
<tr>
<td>#8</td>
<td>100</td>
<td>100</td>
<td>86.96</td>
<td>13.16</td>
<td>12.90</td>
<td>86.97</td>
</tr>
<tr>
<td>#9</td>
<td>71</td>
<td>69.73</td>
<td>85.51</td>
<td>10.00</td>
<td>20.69</td>
<td>84.66</td>
</tr>
<tr>
<td>#10</td>
<td>88</td>
<td>32.21</td>
<td>85.51</td>
<td>12.82</td>
<td>16.67</td>
<td>85.26</td>
</tr>
<tr>
<td>Avg.</td>
<td>72.10</td>
<td>73.04</td>
<td>87.10</td>
<td>13.21</td>
<td>12.66</td>
<td>87.07</td>
</tr>
<tr>
<td>Dev.</td>
<td>27.53</td>
<td>27.50</td>
<td>3.58</td>
<td>4.36</td>
<td>7.56</td>
<td>3.82</td>
</tr>
<tr>
<td>Performance metric</td>
<td>PTVPSO-FKNN without feature selection</td>
<td>PTVPSO-FKNN with feature selection</td>
<td>Paired t-test</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>--------------------------------------</td>
<td>-----------------------------------</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type I error</td>
<td>17.58 ± 0.78</td>
<td>15.87 ± 2.42</td>
<td>0.043</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type II error</td>
<td>19.04 ± 3.96</td>
<td>15.66 ± 1.94</td>
<td>0.020</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUC</td>
<td>81.69 ± 2.04</td>
<td>84.24 ± 1.75</td>
<td>0.003</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACC</td>
<td>81.67 ± 2.15</td>
<td>84.17 ± 1.76</td>
<td>0.005</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performance metric</td>
<td>PTVPSO-FKNN without feature selection</td>
<td>PTVPSO-FKNN with feature selection</td>
<td>Paired t-test p-value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------------------------</td>
<td>----------------------------------</td>
<td>----------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type I error</td>
<td>13.21 ± 4.36</td>
<td>9.18 ± 4.49</td>
<td>0.090</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type II error</td>
<td>12.66 ± 7.56</td>
<td>11.19 ± 3.58</td>
<td>0.490</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUC</td>
<td>87.07 ± 0.04</td>
<td>89.81 ± 2.27</td>
<td>0.053</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACC</td>
<td>87.10 ± 0.04</td>
<td>89.57 ± 2.25</td>
<td>0.090</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Performance metric</td>
<td>PTVPSO-FKNN</td>
<td>GA-FKNN</td>
<td>Paired t-test p-value</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------</td>
<td>---------</td>
<td>---------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type I error</td>
<td>15.87 ± 2.42</td>
<td>17.02 ± 5.08</td>
<td>0.354</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type II error</td>
<td>15.66 ± 1.94</td>
<td>14.94 ± 10.47</td>
<td>0.544</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AUC</td>
<td>84.24 ± 1.75</td>
<td>84.02 ± 4.20</td>
<td>0.450</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACC</td>
<td>84.17 ± 1.76</td>
<td>83.33 ± 3.40</td>
<td>0.443</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selected features</td>
<td>15.30 ± 2.75</td>
<td>16.00 ± 3.13</td>
<td>0.010</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table(9)
<table>
<thead>
<tr>
<th>Performance metric</th>
<th>PTVPSO-FKNN</th>
<th>GA-FKNN</th>
<th>Paired t-test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type I error</td>
<td>9.18 ± 4.49</td>
<td>11.50 ± 4.62</td>
<td>0.138</td>
</tr>
<tr>
<td>Type II error</td>
<td>11.19 ± 3.58</td>
<td>12.32 ± 5.36</td>
<td>0.455</td>
</tr>
<tr>
<td>AUC</td>
<td>89.81 ± 2.27</td>
<td>88.09 ± 2.77</td>
<td>0.079</td>
</tr>
<tr>
<td>ACC</td>
<td>89.57 ± 2.25</td>
<td>87.97 ± 2.46</td>
<td>0.075</td>
</tr>
<tr>
<td>Selected features</td>
<td>9.50 ± 1.58</td>
<td>10.30 ± 1.70</td>
<td>0.011</td>
</tr>
</tbody>
</table>

Table (10)
<table>
<thead>
<tr>
<th>Fold</th>
<th>Selected features</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>X₂ X₄ X₅ X₇ X₁₀ X₁₂ X₁₅ X₂₀ X₂₂ X₂₃ X₂₆ X₂₇</td>
</tr>
<tr>
<td>#2</td>
<td>X₁ X₃ X₄ X₆ X₇ X₈ X₁₁ X₁₃ X₁₆ X₁₇ X₁₈ X₁₉ X₂₀ X₂₁ X₂₃ X₂₅ X₃₀</td>
</tr>
<tr>
<td>#3</td>
<td>X₁ X₂ X₃ X₄ X₅ X₆ X₉ X₁₁ X₁₃ X₁₆ X₂₀ X₂₂ X₂₃ X₂₄ X₂₅ X₂₇</td>
</tr>
<tr>
<td>#4</td>
<td>X₁ X₂ X₃ X₄ X₅ X₉ X₁₀ X₁₂ X₁₃ X₁₅ X₁₆ X₁₇ X₁₈ X₂₀ X₂₂ X₂₃ X₂₄ X₂₅ X₂₉</td>
</tr>
<tr>
<td>#5</td>
<td>X₁ X₂ X₃ X₄ X₅ X₆ X₉ X₁₀ X₁₁ X₁₂ X₁₅ X₁₆ X₁₉ X₂₀ X₂₃ X₂₅ X₂₇ X₂₈ X₃₀</td>
</tr>
<tr>
<td>#6</td>
<td>X₁ X₇ X₉ X₁₄ X₁₇ X₁₈ X₁₉ X₂₁ X₂₃ X₂₄ X₂₅ X₂₇ X₃₀</td>
</tr>
<tr>
<td>#7</td>
<td>X₂ X₄ X₅ X₇ X₉ X₁₀ X₁₃ X₁₆ X₁₇ X₁₈ X₂₁ X₂₃ X₂₅ X₂₉ X₃₀</td>
</tr>
<tr>
<td>#8</td>
<td>X₁ X₂ X₃ X₄ X₅ X₇ X₉ X₁₀ X₁₉ X₂₀ X₂₅ X₂₇ X₂₉</td>
</tr>
<tr>
<td>#9</td>
<td>X₁ X₅ X₉ X₁₂ X₁₆ X₁₈ X₂₀ X₂₃ X₂₅ X₂₆ X₂₈</td>
</tr>
<tr>
<td>#10</td>
<td>X₁ X₂ X₅ X₉ X₁₀ X₁₁ X₁₄ X₁₅ X₁₆ X₁₇ X₁₈ X₂₁ X₂₃ X₂₅ X₂₇ X₂₈ X₃₀</td>
</tr>
<tr>
<td>Date sets</td>
<td>PTVPSO-FKNN</td>
</tr>
<tr>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td>Type I error</td>
</tr>
<tr>
<td></td>
<td>(%)</td>
</tr>
<tr>
<td>Wieslaw</td>
<td>15.87</td>
</tr>
<tr>
<td></td>
<td>± ±</td>
</tr>
<tr>
<td></td>
<td>2.42</td>
</tr>
<tr>
<td>Australian</td>
<td>9.18</td>
</tr>
<tr>
<td></td>
<td>± ±</td>
</tr>
<tr>
<td></td>
<td>4.49</td>
</tr>
<tr>
<td></td>
<td>± ±</td>
</tr>
<tr>
<td></td>
<td>4.49</td>
</tr>
<tr>
<td></td>
<td>± ±</td>
</tr>
<tr>
<td></td>
<td>681.26</td>
</tr>
<tr>
<td></td>
<td>± ±</td>
</tr>
</tbody>
</table>
A novel bankruptcy prediction model based on an adaptive fuzzy k-nearest neighbor method

Hui-Ling Chena,b Bo Yanga,b Gang Wanga,b Jie Liua,b Xin Xua,b Su-Jing Wanga,b Da-You Liua,b

a(College of Computer Science and Technology, Jilin University, Changchun 130012, China)
b(Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, China)

Abstract:
Bankruptcy prediction is one of the most important issues in financial decision-making. Constructing effective corporate bankruptcy prediction models in time is essential to make companies or banks prevent from bankruptcy. This study proposes a novel bankruptcy prediction model based on an adaptive fuzzy k-nearest neighbor (FKNN) method, where the neighborhood size k and the fuzzy strength parameter m are adaptively specified by the continuous particle swarm optimization (PSO) approach. In addition to performing the parameter optimization for FKNN, PSO is also utilized to choose the most discriminative subset of features for prediction. Adaptive control parameters including time-varying acceleration coefficients (TVAC) and time-varying inertia weight (TVIW) are employed to efficiently control the local and global search ability of PSO algorithm. Moreover, both the continuous and binary PSO are implemented in parallel on a multi-core platform. The proposed bankruptcy prediction model, named PTVPSO-FKNN, is compared with five other state-of-the-art classifiers on two real-life cases. The obtained results clearly confirm the superiority of the proposed model in terms of classification accuracy, Type I error, Type II error and area under the receiver operating characteristic curve (AUC) criterion. The proposed model also demonstrates its ability to identify the most discriminative financial ratios. Additionally, the proposed model has reduced a large amount of computational time owing to its parallel implementation. Promisingly, PTVPSO-FKNN might serve as a new candidate of powerful early warning systems for bankruptcy prediction with excellent performance.

Keywords: Fuzzy k-nearest neighbor; Parallel computing; Particle swarm optimization; Feature selection; Bankruptcy prediction

1. Introduction
Accurately identifying the potentially financial failure of companies remains a goal of many stakeholders involved. Because there is no underlying economic theory of bankruptcy, searching for more accurate bankruptcy prediction models remains the goal in the field of the bankruptcy prediction. As a matter of fact, bankruptcy prediction can be formulated as the problem of solving classification task. A fair amount of classification models has been developed for bankruptcy prediction. These models have progressed from statistical methods to the artificial intelligence (AI)
approaches. A number of statistical methods such as the simple univariate analysis [1], multivariate discriminant analysis technique [2], logistic regression approach [3] and factor analysis technique [4] have been typically used for financial applications including bankruptcy prediction. Recent studies in the AI approach, such as artificial neural networks (ANN) [5][6][7][8][9][10][11], rough set theory [12][13][14], support vector machines (SVM) [15][16][17], k-nearest neighbor method (KNN) [18][19][20], Bayesian network models [21][22] and other different methods such as hybrid methods and ensemble methods [23][24][25][26] have also been successfully applied to bankruptcy prediction (see [25][26] for detail). Among these techniques, ANN has become one of the most popular techniques for the prediction of corporate bankruptcy due to its high prediction accuracy. However, a major disadvantage of ANN lies in their knowledge representation. The black box nature of ANN makes it difficult for humans to understand how the networks predict the bankruptcy.

Compared with ANN, KNN is simple, easily interpretable and can achieve acceptable accuracy rate. Albeit these advantages, the standard KNN methods place equal weights on all the selected neighbors regardless of their distances from the query point. An improvement over the standard KNN classifier is the Fuzzy k-nearest neighbor classifier (FKNN) [27], which uses concepts from fuzzy logic to assign degree of membership to different classes while considering the distance of its k-nearest neighbors. It means that all the instances are assigned a membership value in each class rather than binary decision of ‘bankruptcy’ or ‘non-bankruptcy’. Points closer to the query point contributes larger value to be assigned to the membership function of their corresponding class in comparison to far away neighbors. Class with the highest membership function value is taken as the winner. The FKNN method has been frequently used for the classification of biological data [28][29][30], image data [31][32] and so on. Nevertheless, only few works have paid attention to using FKNN to dealing with the financial problems. Bian et al. [33] used FKNN as a reference classifier in their experiments in order to show the superiority of the proposed Fuzzy-rough KNN method, which incorporated the rough set theory into FKNN to further improve the accuracy of bankruptcy prediction. However, they did not comprehensively investigate the neighborhood size k and the fuzzy strength parameter m, which play a significant role in improving the prediction result. This work will explore the full potential of FKNN by automatically determining k and m to exploit the maximum classification accuracy for bankruptcy prediction.

Besides choosing a good learning algorithm, feature selection is also an important issue in building the bankruptcy prediction models [25][34][35][36][37], which refers to choosing subset of attributes from the set of original attributes. The purpose of the feature selection is to identify the significant features and build a good learning model. The benefits of feature selection are threefold: improving the prediction performance of the predictors, providing faster and more cost-effective predictors, and providing a better understanding of the underlying process that generated the data [38]. In bankruptcy prediction, genetic algorithms (GA) is usually used to select a subset of input features [39][40][41], to find appropriate hyper-parameter values of a predictor (for example, the kernel width and the regularization constant in the case of SVM) [35][42][43], or to determine predictor parameters (for example, Multilayer perceptron weights) [44][45]. Compared with GA, PSO algorithm [46] has no crossover and mutation operators, it is simple and computationally inexpensive both in memory and runtime. Additionally, every particle adjusts their velocity and position according to the local best and global best. So that all the particles have
a powerful search capability, which can help the swarm find the optimal solution. As for GA, after finding a locally optimum, it is difficult for it to find out a much better one even with a random search strategy in terms of mutation operator especially within a reasonable searching time. In this work, we will focus on exploring the PSO-based parameter optimization and feature selection approach. The continuous PSO algorithm will be employed to evolve an adaptive FKNN, where the neighborhood size k and the fuzzy strength parameter m are adaptively specified. On the other hand, the binary PSO will be used as a feature selection vehicle to identify the most informative features as well.

When dealing with the practical problems, the evolutionary-based methods such as the PSO and GA will cost a lot of computational time. There is an urgent need to improve the performance using high-performance computing techniques. For this reason, it is one of the major purposes of this paper to use a parallel environment to speed up the search and optimization process. Both the continuous and binary PSO are implemented on a multi-core platform using OpenMP (Open Multi-Processing) which is a portable, scalable model that gives programmers a simple and flexible interface for developing parallel applications for platforms [47]. The efficiency and effectiveness of the proposed bankruptcy prediction model is validated by comparing with other five state-of-the-art classification methods on two real-life cases. The experimental results demonstrate that the proposed model can not only obtain the most appropriate parameters but also show high discriminating power as a feature selection tool. Further comparison is also made between the parallel model and serial one. Based on the experiments conducted, it is inferred that the parallel model PTVPSO-FKNN can significantly reduce the computational time.

The rest of the paper is organized as follows. In Section 2, we give a brief description of FKNN method and PSO algorithm. Section 3 proposes our model, the simultaneous optimization of relevant parameters and feature subset by the PSO approach in a parallel environment. In the next section, the detailed experimental design is presented, and Section 5 describes all the empirical results and discussion. Finally, Conclusions and future work are summarized in Section 6.

2. Background Materials

2.1 Fuzzy k-Nearest Neighbor Algorithm

The k-nearest neighbor algorithm (KNN) is one of the oldest and simplest non-parametric pattern classification methods. In the KNN algorithm a class is assigned according to the most common class amongst its k-nearest neighbors. In 1985, Keller proposed a fuzzy version of KNN by incorporating the fuzzy set theory into the KNN algorithm, and named it as “fuzzy KNN classifier algorithm” (FKNN) [27]. According to his approach, rather than individual classes as in KNN, the fuzzy memberships of samples are assigned to different categories according to the following formulation:

$$ u_i(x) = \frac{\sum_{j=1}^{k} u_{ij} (1/\|x-x_j\|^{2(m-1)})}{\sum_{j=1}^{k} (1/\|x-x_j\|^{2(m-1)})} $$

where $i=1,2,\ldots,C$, and $j=1,2,\ldots,k$, with C number of classes and k number of nearest neighbors. The fuzzy strength parameter m is used to determine how heavily the distance is weighted when calculating each neighbor’s contribution to the membership value, and its value is usually chosen
as $m \in (1, \infty)$. $\|x - x_i\|$ is the distance between x and its jth nearest neighbor x_j. Various metrics can be chosen for $\|x - x_i\|$, such as Euclidean distance, Hamming distance, and Mahalanobis distance, among other distances. In this study, the Euclidean metric is used. u_{ij} is the membership degree of the pattern x_i from the training set to the class i, among the k nearest neighbors of x. There are two ways [27] to define u_{ij}: one way is the crisp membership, i.e., each training pattern has complete membership in their known class and non-memberships in all other classes. The other way is the constrained fuzzy membership, i.e., the k nearest neighbors of each training pattern (say x_k) are found, and the membership of x_k in each class is assigned as:

$$u_{ij}(x_k) = \begin{cases} 0.51 + (n_j/K) \times 0.49, & \text{if } j = i \\ (n_j/K) \times 0.49, & \text{if } j \neq i. \end{cases} \quad (2)$$

The value n_j is the number of neighbors found which belong to the jth class. Note that, the memberships calculated by Eq. (2) should satisfy the following equations:

$$\sum_{j=1}^{n} u_{ij} = 1, \quad j = 1, 2, \ldots, n, \quad (3)$$

$$0 < \sum_{j=1}^{n} u_{ij} < n, \quad (4)$$

$$u_{ij} \in [0,1]. \quad (5)$$

In our experiments, we have found that the second way leads to better classification accuracy. After calculating all the memberships for a query sample, it is assigned to the class with which it has the highest membership value, i.e.,

$$C(x) = \arg \max_{i=1}^{C} (u_i(x)) \quad (6)$$

The pseudo-code of the FKNN algorithm is given below:

Input: (a) The training set X with the labeled patterns $\{x_i | i = 1, 2, \ldots, n\}$

(b) The test pattern y

Output: (a) Class label of y

(b) Confidence for each class label.

Algorithm:

For $i = 1, 2, \ldots, n$

Compute the distance from x_i to y using the Euclidean metric.

If $i \leq k$

Include x_i in the set of k nearest neighbors.

Else if (x_i is closer to y than any previous nearest neighbors)

Delete the farthest of the k nearest neighbors.

Include x_i in the set of k nearest neighbors.

End if

End for

For $c = 1$ to C

Compute $u_c(x)$ using (1).

End for

Crisp class label of y is assigned to the class with which it has the highest membership value.
2.2 Time Variant Particle Swarm Optimization (TVPSO)

PSO is inspired by the social behavior of organisms such as bird flocking and fish schooling, which was first developed by Kennedy and Eberhart [46][48]. In PSO each individual is treated as a particle in \(d \)-dimensional space, and each particle has a position and velocity. The position vector of the \(i \)th particle is represented as \(X_i = (x_{i,1}, x_{i,2}, \ldots, x_{i,d}) \), and its according velocity is represented as \(V_i = (v_{i,1}, v_{i,2}, \ldots) \). The velocity and position are updated as follows:

\[
\begin{align*}
 v^{n+1}_{i,j} &= w \times v^n_{i,j} + c_1 \times r_1 \left(p^n_{i,j} - x^n_{i,j}\right) + c_2 \times r_2 \left(p^n_{g,j} - x^n_{i,j}\right) \\
 x^{n+1}_{i,j} &= x^n_{i,j} + v^{n+1}_{i,j}, j = 1, 2, \ldots, d
\end{align*}
\]

(7)

(8)

where Vector \(P_i = (p_{i,1}, p_{i,2}, \ldots, p_{i,d}) \) represents the best previous position of the \(i \)th particle that gives the best fitness value, which is known as the personal best position (pbest). Vector \(P_g = (p_{g,1}, p_{g,2}, \ldots, p_{g,d}) \) is the best particle among all the particles in the population, which is known as the global best position (gbest). \(r_1 \) and \(r_2 \) are random numbers, generated uniformly in the range \([0, 1]\). The velocity \(v_{i,j} \) is restricted to the range \([-v_{\text{max}}, v_{\text{max}}]\), in order to prevent the particles from flying out of the solution space. Generally, \(v_{\text{max}} \) is suggested to set to be 10-20% of the dynamic range of the variable in each dimension [49].

Inertia weight \(w \), introduced by Shi and Eberhart, which is used to balance the global exploration and local exploitation [50]. A large inertia weight facilitates the global search, while a small inertia weight facilitates the local search. In order to reduce the weight over the iterations allowing the algorithm to exploit some specific areas, the inertia weight \(w \) is updated according to the following equation:

\[
w = w_{\text{min}} + \left(w_{\text{max}} - w_{\text{min}}\right) \frac{t - t_{\text{max}}}{t_{\text{max}}}
\]

(9)

where \(w_{\text{max}} \), \(w_{\text{min}} \) are the predefined maximum and minimum values of the inertia weight \(w \), \(t \) is the current iteration of the algorithm and \(t_{\text{max}} \) is the maximum number of iterations. Usually the value of \(w \) is varied between 0.9 and 0.4. Eq. (9) is also known as time-varying inertia weight (TVIW), which will be incorporated into the TVPSO. It has been shown to significantly improve the performance of PSO [51], since it makes PSO have more global search ability at the beginning of the run and have more local search ability near the end of the run. \(c_1 \) and \(c_2 \) are acceleration coefficients, which define the magnitude of the influences on the particles velocity in the directions of the personal and the global optima, respectively. To better balance the search space between the global exploration and local exploitation, time-varying acceleration coefficients (TVAC) have been introduced in [52]. This concept will be adopted in this study to ensure the better search for the solutions. The core idea of TVAC is that \(c_1 \) decreases from its initial value of \(c_{i_1} \) to \(c_{f_1} \), while \(c_2 \) increases from \(c_{i_2} \) to \(c_{f_2} \) using the following equations as in [52].

TVAC can be mathematically represented as follows:

\[
c_1 = (c_{f_1} - c_{i_1}) \frac{t}{t_{\text{max}}} + c_{i_1},
\]

(10)
\[
c_2 = \left(c_{2f} - c_{2i} \right) \frac{t}{t_{\text{max}}} + c_{2i}, \tag{11}
\]

where \(c_{1f}, c_{1i}, c_{2f}, \) and \(c_{2i} \) are constants, \(t \) is the current iteration of the algorithm and \(t_{\text{max}} \) is the maximum number of iterations.

For the binary PSO, the discrete PSO version introduced by Kennedy and Eberhart [53] was adopted in this study. The binary PSO is searching in a discrete space (i.e., searching in a space where ‘0’ presents the feature is selected ‘1’ denotes the feature is discarded). Where a particle moves in a state space restricted to zero and one on each dimension, in terms of the changes in probabilities that a bit will be in one state or the other. If the velocity is high it is more likely to choose ‘1’, and lower values favor choosing ‘0’. A sigmoid function is applied to transform the velocity from continuous space to probability space:

\[
sig(v_{ij}) = \frac{1}{1 + \exp(-v_{ij})}, j = 1, 2, \ldots, d \tag{12}
\]

The velocity update Eq. (7) keeps unchanged except that \(x_{i,j}, p_{i,j} \) and \(p_{g,j} \in \{0, 1\} \), and in order to ensure that bit can transfer between ‘1’ and ‘0’ with a positive probability, \(v_{\text{max}} \) was introduced to limit \(v_{i,j} \). The new particle position is updated using the following rule:

\[
x_{i,j}^{n+1} = \begin{cases} 1, & \text{if } \text{rnd} < \text{sig}(v_{ij}) \\ 0, & \text{if } \text{rnd} \geq \text{sig}(v_{ij}) \end{cases}, j = 1, 2, \ldots, d \tag{13}
\]

where \(\text{sig}(v_{ij}) \) is calculated according to Eq. (12), \(\text{rnd} \) is a uniform random number in the range \([0, 1]\).

As described above, TVPSO is adaptive in nature by allowing its inertia weight and acceleration coefficients to vary with iterations during its search in the continuous and discrete space. This character helps the algorithm explore the search space to a greater extent.

3. Proposed PTVPSO-FKNN Prediction Model

In this section, we describe the proposed PTVPSO-FKNN model for bankruptcy prediction. As mentioned in the Introduction, the aim of this model is to optimize the FKNN classifier by automatically: 1) determining the number of nearest neighbors \(k \) and the fuzzy strength parameter \(m \) and 2) identifying the subset of best discriminative features. In order to achieve this goal, the continuous and binary PSO are combined together to dynamically conduct parameter optimization and feature selection simultaneously. The obtained appropriate feature subset is served as the input into the optimized FKNN model for classification. PTVPSO-FKNN takes into consideration two fitness values for parameter optimization and feature selection. One is the AUC value and the other is the number of selected features by TVPSO. Here, we first describe the model based on the serial PSO algorithm, termed TVPSO-FKNN, and then implement it in parallel.

3.1 TVPSO-FKNN Model based on the Serial PSO Algorithm

The flowchart of the TVPSO-FKNN model for bankruptcy prediction was constructed through the
following main steps as shown in Fig. 1.

Step 1: Encode the particle with \(n+2 \) dimensions. The first two dimensions are \(k \) and \(m \) which are continuous values. The remaining \(n \) dimensions is Boolean features mask, which is represented by discrete value, ‘1’ indicates the feature is selected, and ‘0’ represents the feature is discarded.

Step 2: Initialize the individuals of the population with random numbers. Meanwhile, specify the PSO parameters including the lower and upper bounds of the velocity, the size of particles, the number of iterations, etc.

Step 3: Train the FKNN model with the selected features.

Step 4: It is well known that higher the AUC value the better the classifier is said to be. The particle with high AUC value and the small number of selected features can produce a high fitness value. Hence, we took both of them into consideration in designing the objective function, the fitness value was calculated according to the following objective function:

\[
\begin{align*}
 f_1 &= \text{AUC} \\
 f_2 &= (1 - \frac{\sum_{i=1}^{n} f_{it}}{n}) \\
 f &= \alpha \times f_1 + \beta \times f_2
\end{align*}
\]

where variable AUC in the first sub-objective function \(f_1 \) represents the area under the ROC curve achieved by the FKNN classifier via \(K \)-fold cross-validation (CV), here \(K=5 \). Note that here the 5-fold CV is used to determine the optimal parameters (including \(k \) and \(m \)) which is different from the outer loop of 10-fold CV, which is used to do the performance estimation. In the second sub-objective function \(f_2 \), \(f_{it} \) is the value of feature mask (‘1’ represents that feature is selected and ‘0’ indicates that feature is discarded), \(n \) is the total number of features. The weighted summation of the two sub-objective functions is selected as the final objective function. In the function \(f \), \(\alpha \) is the weight for FKNN classification accuracy, \(\beta \) indicates the weight for the selected features. The weight can be adjusted to a proper value depends on the importance of the sub-objective function. Because the classification performance more depend on the classification accuracy, hence the \(\alpha \) value is set as much bigger than that of \(\beta \). According to our preliminary experiments, the value of \(\alpha \) and \(\beta \) were taken as 0.85 and 0.15 respectively. After the fitness value was obtained, the global optimal fitness was saved as \(gfit \), personal optimal fitness as \(pfit \), global optimal particle as \(gbest \) and personal optimal particle as \(pbest \).

Step 5: Increase the number of iteration.

Step 6: Increase the number of population. Update the position and velocity of \(k, m \) using Eqs.(7-8) and the features using Eq.(7), Eqs.(12-13) in each particle.

Step 7: Train the FKNN classifier with the feature vector obtained in Step 6 and calculate the fitness value of each particle according to Eq. (14). Notice that PSO is used for optimization tasks where the neighborhood size \(k \) to be optimized is integer number. Hence, an extra step is taken to round the encoded value \(k \) to the nearest integer number before the particle is evaluated.

Step 8: Update the personal optimal fitness (\(pfit \)) and personal optimal position (\(pbest \)) by
comparing the current fitness value with the pfit stored in the memory. If the current fitness is dominated by the pfit stored in the memory, then keep the pfit and pbest in the memory; otherwise, replace the pfit and pbest in the memory with the current fitness value and particle position.

Step 9: If the size of the population is reached, then go to Step 10. Otherwise, go to Step 6.

Step 10: Update the global optimal fitness (gfit) and global optimal particle (gbest) by comparing the gfit with the optimal pfit from the whole population. If the current optimal pfit is dominated by the gfit stored in the memory, then keep the gfit and gbest in the memory; otherwise, replace the gfit and gbest in the memory with the current optimal pfit and the optimal pbest from the whole population.

Step 11: If the stopping criteria are satisfied, then go to Step 12. Otherwise, go to Step 5. The termination criteria are that the iteration number reaches the maximum number of iterations or the value of gfit does not improve after 100 consecutive iterations.

Step 12: Get the optimal (k, m) and feature subset from the best particle (gbest).

3.2 Parallel Implementation of the TVPSO-FKNN (PTVPSO-FKNN)

When dealing with the practical problems, the evolutionary-based methods such as PSO and GA will cost a lot of computational time. There is an urgent need to improve the performance using high-performance computing techniques. Consequently, we attempt to implement TVPSO-FKNN in parallel on multi-core processor by using OpenMP to speed up the search and optimization process.

The architecture of the multi-core platform is divided into three lays as shown in Fig. 2: 1) TVPSO-FKNN: It consists of a number of particles, which can supply computing requirements. The parallel algorithm controls the iterations of particles and each particle is calculated separately. 2) OpenMP: This component guarantees to implement parallel synchronization and establish the communications with operating system (OS). The main part of OpenMP is scheduler, which provides the system with job scheduling and allocation. 3) Multi-core processor: The job is dispatched by OpenMP via OS.

The pseudo-code of the parallel PTVPSO-FKNN is as follows:

1. Initialize system parameters.
2. Train FKNN model.
3. Calculate fitness.
4. **While** (cni < mni) /*current number of iteration (cni), maximum number of iteration (mni)*/
 - **For** each particle
 - Update position.
 - Update velocity.
Train FKNN model.
Calculate fitness.
Calculate pfit. /* personal optimal fitness (pfit)*/
Calculate pbest. /* personal optimal position (pbest)*/
End for
Calculate gfit. /* global optimal fitness (gfit)*/
Calculate gbest. /* global optimal particle (gbest)*/
cni = cni + 1.
End while

4 Experimental Design

4.1 Data Description

The first financial data used for this study is the Wieslaw [54] dataset which contains 30 financial ratios and 240 cases in total (112 from bankrupt Polish companies and 128 from non-bankrupt ones between 1997 and 2001). All the observations cover the period spanning 2 to 5 years before bankruptcy took place. It should be noted that the size of the dataset is not that large compared to the majority of bankruptcy prediction studies. However, according to [55], the dataset is reliable since increasing the dataset length does not lead to the accuracy increase. The description of the 30 financial ratios is shown in Table 1. Fig. 3 illustrates the distribution of the two classes of 240 samples in the subspace formed by the two best features according to the principal component analysis algorithm [56]. As shown in this figure, there is apparently strong overlap between the bankrupt companies and non-bankrupt ones.

<Insert Fig.3 here>
<Insert Table 1 here>

The second dataset is the Australian credit dataset, is available from the UCI Repository of Machine Learning Databases. The Australian credit data consists of 307 instances of creditworthy applicants and 383 instances where credit is not creditworthy. Each instance contains 6 nominal, 8 numeric attributes, and 1 class attribute (accepted or rejected). This dataset is interesting because there is a good mixture of attributes: continuous, nominal with small numbers of values, and nominal with larger numbers of values. There are also a few missing values. To protect the confidentiality of data, the attributes names and values have been changed to meaningless symbolic data.

Normalization is employed to avoid feature values in greater numerical ranges dominating those in smaller numerical ranges, as well as to avoid the numerical difficulties during the calculation [57]. Generally, the data could be normalized by scaling them into the interval of [0, 1] or [-1, 1], here we chose the range of [-1, 1] according to the Eq. (15), where \(x \) is the original value, \(x' \) is the scaled value, \(max_a \) is the maximum value of feature \(a \), and \(min_a \) is the minimum value of feature \(a \).

\[
x' = (\frac{x - min_a}{max_a - min_a}) * 2 - 1 \tag{15}
\]
In order to gain an unbiased estimate of the generalization accuracy, the \(k \)-fold CV presented by Salzberg [58] was used to evaluate the classification accuracy. This study set \(k \) as 10, i.e., the data was divided into ten subsets. Each time, one of the 10 subsets is used as the test set and the other 9 subsets are put together to form a training set. Then the average error across all 10 trials is computed. The advantage of this method is that all of the test sets are independent and the reliability of the results could be improved. And we attempted to design our experiment using two loops. The inner loop is used to determine the optimal parameters and best feature subset for the FKNN classifier. The outer loop is used for estimating the performance of the FKNN classifier. In order to keep the same proportion of bankrupt and non-bankrupt companies of each set as that of the entire dataset, here a stratified 10-fold CV is employed as the outer loop and a stratified 9-fold CV is used for the inner loop. It is also referred to as the nested stratified 10-fold CV, which is also used in [59] for the microarray gene data analysis.

4.2 Experimental Scheme

The proposed experimental framework was articulated around the following three main experiments.

1) The first experiment aimed at assessing the effectiveness of the FKNN approach in bankruptcy prediction in the whole original feature space. For comparison purpose, we implemented five other reference classification approaches, namely KNN, SVM [60], back propagation neural network (BPNN), the probabilistic neural network (PNN) and extreme learning machine (ELM) [61]. In addition, we have implemented GA based FKNN (GA-FKNN) for comparison purpose.

2) In the second experiment, it was plan to assess the capability of the proposed PTVPSO-FKNN model with feature selection to boost further the performance of the FKNN classifier by using the time-varying PSO approach. Furthermore, we attempted to investigate the whole evolutionary process of TVPSO in performing the parameter optimization and feature selection.

3) The third experimental part had for objective to assess the capability of the proposed parallel TVPSO-FKNN model to enhance further the efficiency of the serial TVPSO-FKNN model with respect to the CPU time.

4.3 Experimental Setup

The proposed PTVPSO-FKNN model is implemented using Microsoft Visual C++ 6.0 and OpenMP. For SVM, LIBSVM implementation is utilized, which is originally developed by Chang and Lin [62]. Regarding ELM, the implementation by Zhu and Huang available from http://www3.ntu.edu.sg/home/egbhuang is used. We implement PSO, GA, FKNN and KNN from scratch. BPNN and PNN are developed by using the Neural Network Toolbox of Matlab 7.0. The computer is Intel Quad-Core Xeon 2.0 GHz CPU; 4 GB RAM and the system is Windows Server 2003.

The detail parameter setting for PTVPSO-FKNN is as follows. The number of the iterations and particles are set to 250 and 8 for the Wieslaw dataset, 200 and 5 for the Australian dataset, respectively. The searching ranges for \(k \) and \(m \) are as follows: \(k \in [1, 100] \) and \(m \in [1, 10] \) for the Wieslaw dataset, \(k \in [1, 100] \) and \(m \in [1, 100] \) for the Australian dataset. \(v_{\text{max}} \) is set about 60% of the dynamic range of the variable on each dimension for the continuous type of dimensions. For
the discrete type particle for feature selection, \([-v_{max}, v_{max}]\) is set as \([-6, 6]\). As suggested in [52], \(c_1\), \(c_1^f\), \(c_2\) and \(c_2^f\) are set as follows: \(c_1=2.5\), \(c_1^f=0.5\), \(c_2^f=2.5\). According to our preliminary experiment, \(w_{max}\) and \(w_{min}\) are set to 0.9 and 0.4, respectively.

For GA, the solution is binary-encoded and the roulette wheel selection algorithm is used. The crossover probability and mutation probability are set to 0.8 and 0.05, respectively. To perform a fair comparison, the same computational effort is used in TVPSO and GA. That is, the maximum generation, population size and searching range of the parameters in GA are the same as those in TVPSO. For SVM, we consider the nonlinear SVM based on the popular Gaussian (RBF) kernel, and a grid-search technique [57] is employed using 10-fold CV to find out the optimal parameter values of RBF kernel function. The range of the related parameters \(C\) and \(\gamma\) are varied between \(C = \{2^{-5}, 2^{-3}, \ldots, 2^{15}\}\) and \(\gamma = \{2^{-15}, 2^{-13}, \ldots, 2^4\}\). There will be \(11 \times 9 = 99\) parameter combinations of \((C, \gamma)\) are tried and the one with the best CV accuracy is chosen as the parameter values of the RBF kernel. Then the best parameter pair \((C, \gamma)\) is used to create the model for training. For KNN, we find the best value of \(k\) within the range \([1,100]\) by using 10-fold CV. Concerning BPNN, we use the three layer back-propagation network. We try different settings of the number of nodes in the hidden layers (5, 10, 15, 20, 25 and 30) and the different learning epochs (50, 100, 200 and 300) as the stopping criteria for training. In PNN, the pattern layer uses RBF neuron with spread parameter of 0.1 and 0.8 give the best accuracies by using the 10-fold CV on the Wieslaw dataset and Australian dataset, respectively. Hence these two values will be used for the subsequent analysis. In ELM the sigmoid activation function is used to compute the hidden layer output matrix. ELM models are built for 100 different numbers of neurons between 1 and 100. The best number of neurons will be taken to create the training model.

4.4 Measure for Performance Evaluation

Type I error, Type II error, total classification accuracy (ACC) and the area under the Receiver Operating Characteristic curve (AUC) [63] were used to test the performance of the proposed PTVPSO-FKNN model. They are the most widely used measures to assess the performance of bankruptcy prediction systems [25]. Before defining these measures, we introduced the concept of confusion matrix, which is presented in Table 2. Where TP is the number of true positives, which means that some cases with ‘positive’ class (with bankruptcy) is correctly classified as positive; FN, the number of false negatives, which means that some cases with the ‘positive’ class is classified as negative ; TN, the number of true negatives, which means that some cases with the ‘negative’ class (with non-bankruptcy) is correctly classified as negative; and FP, the number of false positives, which means that some cases with the ‘negative’ class is classified as positive.

Type I and Type II errors are two important measures which describe how well the classifier discriminates between case with non-bankruptcy and with bankruptcy. Type I error measures the proportion of non-bankrupt cases which are incorrectly identified as bankrupt ones. It is defined as Type I error = \(FP / (FP + TN)\). Type II error measures the proportion of bankrupt cases which are incorrectly identified as non-bankrupt ones. It is defined as Type II error = \(FN / (TP + FN)\). The ACC is calculated by \(TP + TN / (TP + FP + FN + TN)\). The receiver operating characteristic (ROC) curve is a graphical display that gives the measure of the predictive accuracy of a logistic model.
The curve displays the true positive rate and false positive rate. AUC is the area under the ROC curve, which is one of the best methods for comparing classifiers in two-class problems.

5 Experimental Results and Discussion

5.1 Experiment I: Classification in the Whole Original Feature Space

As mentioned earlier, in this experiment we evaluated the effectiveness of the proposed model on the original feature space. In order to verify the effectiveness of the proposed model, TVPSO-FKNN was compared with five other reference classifiers (SVM, KNN, BPNN, PNN and ELM). Table 3 and Table 4 show the results achieved with all six investigated classifiers (PTVPSO-FKNN, SVM, KNN, BPNN, PNN and ELM) for the Wieslaw dataset and the Australian dataset respectively. It is well known that higher the AUC value the better the classifier is said to be. Accordingly, the classifiers are arranged in the descending order of AUC in the tables. As clearly indicated in Table 3, PTVPSO-FKNN outperforms all other methods with the AUC of 81.69%, except the Type II error which is slightly higher than that of PNN. PNN is next to PTVPSO-FKNN with the AUC of 79.89%, Type I error of 21.71%, Type II error of 18.52% and ACC of 79.58%, followed by BPNN, KNN, ELM and SVM. For the Australian dataset whose results are shown in Table 4, we can also observe that PTVPSO-FKNN performs best among all the available methods with the AUC of 87.07%, except the Type I error which is slightly higher than that of SVM. SVM is next to PTVPSO-FKNN with the AUC of 86.08%, Type I error of 9.36%, Type II error of 18.47% and ACC of 85.80%, followed by ELM, KNN, BPNN and PNN. The results are interesting and exciting, which suggests that the FKNN approach can become a promising alternative bankruptcy prediction tool in financial decision-making, where SVM and ANN are known to be the best models [26].

<Insert Table 3 here>
<Insert Table 4 here>

The better performance of the proposed model is owing to the fact that the TVPSO has aided the FKNN classifier to achieve the maximum classification performance by automatically detecting the optimal neighborhood size \(k \) and the fuzzy strength parameter \(m \). The detailed results obtained by the proposed method via 10-fold CV are shown in Table 5 and Table 6 for the Wieslaw dataset and the Australian dataset respectively. As shown in the two tables, it can be observed that the values of \(k \) and \(m \) are different for each fold of the data. With the optimal combination of \(k \) and \(m \), FKNN obtained different best classification performance in each fold in terms of the ACC, Type I error, Type II error and AUC. In addition, according to our preliminary experiment, \(k \) and \(m \) can be varied automatically when perform another run of 10-fold CV. The explanation lies in the fact that the two parameters are evolved together by the TVPSO algorithm according to the specific distribution of the training data at hand. It indicates that the optimal values of \(k \) and \(m \) can always be adaptively specified by TVPSO during each run.

<Insert Table 5 here>
<Insert Table 6 here>
5.2 Experiment II: Classification with the PTVPSO-FKNN Model with Feature Selection

As described earlier, the proposed PTVPSO-FKNN model aimed at enhancing the FKNN classification process by not only dealing with the parameters optimization but also automatically identifying the subset of the most discriminative features. In this experiment, we attempt to explore the capability of the PTVPSO-FKNN to further enhance the performance of the FKNN classifier by using the TVPSO. Table 7 and Table 8 list the results of PTVPSO-FKNN with and without feature selection for the Wieslaw dataset and the Australian dataset respectively. As shown in Table 7, results obtained on the Wieslaw dataset using PTVPSO-FKNN with feature selection significantly outperforms PTVPSO-FKNN without feature selection in terms of Type I error, Type II error, AUC and ACC at the statistical significance level of 0.05. On the Australian dataset, PTVPSO-FKNN with feature selection significantly outperforms PTVPSO-FKNN without feature selection in terms of Type I error, AUC and ACC at the statistical significance level of 0.1. By using feature selection, the ACC, AUC, Type I error and Type II error have been improved by 2.5%, 2.55%, 1.71% and 3.38% on the Wieslaw dataset, and by 2.47%, 2.74%, 4.03% and 1.47% on the Australian dataset, respectively. For comparison purpose, we conducted the comparative study between TVPSO based and GA based FKNN on the two datasets as shown in Table 9 and Table 10. From Table 9, it can be seen that PTVPSO-FKNN outperforms GA-FKNN in terms of Type I error, AUC and ACC on the Wieslaw dataset, though the difference between them is not statistically significant. For the Australian dataset, PTVPSO-FKNN significantly outperforms GA-FKNN in terms of AUC and ACC at the significant level of 0.1, and achieves better performance in terms of Type I error and Type II error as shown in Table 10. From the tables, we can also find that PTVPSO-FKNN has achieved better performance with a smaller feature subset than GA-FKNN on both datasets under investigation. Moreover, during the evolving process, we observe that the convergence speed of TVPSO is faster than that of GA, and GA is more time-consuming than TVPSO as well. It reflects that TVPSO has stronger search ability than GA on the tested problems. In addition, it is interesting to see that the standard deviation for the acquired performance by the PTVPSO-FKNN is much smaller than that of GA-FKNN on both datasets, which indicates consistency and stability of the proposed model.

To explore how many features and what features are selected during the PSO feature selection procedure, we attempted to further investigate the detail of the feature selection mechanism of the PSO algorithm. For simplicity, here we only took the Wieslaw dataset for example. The original numbers of features of the dataset is 30. As shown in Table 11, not all features are selected for classification after the feature selection. Furthermore, feature selection has increased the classification accuracy, as demonstrated in Table 7 and Table 8. The average number of selected features by PTVPSO-FKNN is 15.3, and its most important features are C/CL(X1), C/TA(X2), CA/TA(X4), WC/TA(X5), S/I(X7), NP/TA(X9), S/R2(X16), S/CA(X18), S/TA2(X20), R/L(X23), L/TA(X25) and LTL/E(X27), which can be found in the frequency of the selected features of
10-fold CV as shown in Fig. 4. Note that the important features (financial ratios) selected by the proposed model are indeed important from the knowledge perspective also as they are related to current liabilities and long term liabilities, current assets, shareholders’ equity and cash, sales, inventory, working capital, net profit, receivables, liabilities, total assets.

To observe the evolutionary process in PTVPSO-FKNN, Fig. 5 shows the evolution of the best fitness for fold 1# within 10-fold CV on the Wieslaw dataset. It should be noted that these results are calculated based on the global best positions, namely, the fitness of all the local best positions on the training set are calculated to obtain the best fitness of the population in each generation. The evolutionary processes are quite interesting. It can be observed that the fitness curves gradually improved from iteration 1 to 130 and exhibited no significant improvements after iteration 22, eventually stopped at the iteration 130 where the particles reached the stopping criterion (100 successively same gbest values). The fitness increase rapidly in the beginning of the evolution, after certain number of generations, it starts increasing slowly. During the latter part of the evolution, the fitness keeps stability until the stopping criterion is satisfied. This demonstrates that PTVPSO-FKNN can converge quickly toward the global optima, and fine tune the solutions very efficiently. The phenomenon illustrates the effectiveness of PTVPSO-FKNN in simultaneously evolving the parameters (k and m) and the features through using the TVPSO algorithm.

5.3 Experiment III: Comparison between the Parallel TVPSO-FKNN Model and the Serial One

In order to reduce further the running time of the serial TVPSO-FKNN model, we implemented the TVPSO-FKNN model in a parallel environment. To validate the efficiency of the parallel version, here we attempted to compare the performance of the PTVPSO-FKNN with that of TVPSO-FKNN. Table 12 reports the average results of Type I error, Type II error, AUC, ACC and computational time in seconds via 10-fold CV using two models on the two datasets. It can be seen that PTVPSO-FKNN and TVPSO-FKNN give almost the same results on both datasets, minor difference between the parallel model and the serial one is attributed to different partitions of the data are chosen when perform different folds within 10-fold CV. Thus, it verifies the correctness of the parallel design and implementation.

As shown in the Table 12, it can be seen that the average training time within the 10-fold CV for the TVPSO-FKNN was about 3.2 times that of the PTVPSO-FKNN on the Wieslaw dataset, while about 3.3 times that of PTVPSO-FKNN on the Australian dataset. Moreover, the average CPU time spent by the two methods within 10-fold CV has been presented in Fig.6. It can be observed that PTVPSO-FKNN cost much fewer CPU time than TVPSO-FKNN on each fold of the dataset.
It indicates that the TVPSO-FKNN has benefited a great deal from the parallel implementation with respect to the computational time. It is worth noticing that here only a quad-core processor is used in this experiment, thus the computational time will be further reduced with increase of the cores.

6 Conclusions and Future work

This study provides a novel model for bankruptcy prediction. The main novelty of this model is in the proposed TVPSO-based approach, which aims at aiding the FKNN classifier to achieve the maximum classification performance. On the one hand, the continuous TVPSO is employed to adaptively specify the two important parameters k and m of the FKNN classifier. On the other hand, the binary TVPSO is adopted to identify the most discriminative features. Moreover, both the continuous and binary TVPSO are implemented in a parallel environment to reduce further the computational time. The experimental results demonstrate that the developed model performs significantly better than the other five state-of-the-art classifiers (KNN, SVM, BPNN, PNN and ELM) in financial application field in terms of Type I error, Type II error, ACC and AUC on two real-life cases. In addition, the experiment reveals that the PTVPSO-FKNN is also a powerful feature selection tool which has detected a subset of best discriminative financial ratios that are really important from the knowledge perspective. Last but not least, the proposed model computes rather efficiently owing to the high performance computing technology.

Hence, it can be safely concluded that, the developed PTVPSO-FKNN model can serve as a promising alternative early warning system in financial decision-making. Meanwhile, we should note that the proposed model does perform efficiently on the data at hand; however, it is not obvious that the parallel algorithm will lead to significant improvement when applying to the financial data with larger instances. Future investigation will pay much attention to evaluating the proposed model in the larger datasets.

7 Acknowledgements

This research is supported by the National Natural Science Foundation of China (NSFC) under Grant Nos. 60873149, 60973088, 60773099 and the National High-Tech Research and Development Plan of China under Grant Nos. 2006AA10Z245, 2006AA10A309. This work is also supported by the Open Projects of Shanghai Key Laboratory of Intelligent Information Processing in Fudan University under the Grant No. IIPL-09-007, the Open Project Program of the National Laboratory of Pattern Recognition (NLPR) and the basic scientific research fund of Chinese Ministry of Education.

References

[22]. Sun, L. and P.P. Shenoy, Using Bayesian networks for bankruptcy prediction: Some

Figure Captions:

Fig.1. Flowchart of the TVPSO-FKNN model

Fig.2. Parallel architecture of the PTVPSO-FKNN model

Fig.3. Two-dimensional distribution of the two classes (bankrupt and non-bankrupt) in the subspace formed by the best couple of features obtained with the PCA algorithm

Fig.4. The frequency of the selected features via 10-fold CV on the Wieslaw dataset

Fig.5. The best fitness during the training stage for fold #1 on the Wieslaw dataset

Fig.6. The average CPU time costs of two models via 10-fold CV on the Wieslaw dataset and Australian dataset (The legend TVPSO-FKNN-WIE and PTVPSO-FKNN-WIE represent the serial model and the parallel model performing on the Wieslaw dataset respectively, TVPSO-FKNN-AUS and PTVPSO-FKNN-AUS represent the serial model and the parallel model performing on the Australian dataset respectively).

Table Captions:

Table 1 The description of the Wieslaw dataset

Table 2 Confusion matrix for bankruptcy prediction

Table 3 The ACC, Type I error, Type II error and AUC achieved by different classifiers on the Wieslaw dataset

Table 4 The ACC, Type I error, Type II error and AUC achieved by different classifiers on the Australian dataset

Table 5 The detailed results obtained by TVPSO-FKNN via 10-fold CV on the Wieslaw dataset

Table 6 The detailed results obtained by TVPSO-FKNN via 10-fold CV on the Australian dataset

Table 7 Experimental results of PTVPSO-FKNN with and without feature selection (%) on the Wieslaw dataset

Table 8 Experimental results of PTVPSO-FKNN with and without feature selection (%) on the Australian dataset

Table 9 Experimental results of PTVPSO-FKNN vs. GA-FKNN (%) on the Wieslaw dataset

Table 10 Experimental results of PTVPSO-FKNN vs. GA-FKNN (%) on the Australian dataset

Table 11 The subset of features selected by PTVPSO-FKNN via 10-fold CV on the Wieslaw dataset

Table 12 The performance of PTVPSO-FKNN and TVPSO-FKNN